#' Make Gradient of the objective function
#'
#' @param a do not know
#' @param A do not know
#' @param dnom numeric vector representing the exposures (claims) used in the
#' denominator
#' @param g_obj objective function
#' @param g_grad gradient function
#' @export
make_gradient_of_objective <- function(a, A, dnom, g_obj, g_grad) {
npar = length(a) - 2
p = a[npar + 2]
size <- length(dnom)
# Generate a matrix to reflect exposure count in the variance structure
logd = log(matrix(dnom, size, size))
Av = aperm(array(A, c(size, size, npar)), c(3, 1, 2))
e = g_obj(a[1:npar])
ev = aperm(array(e, c(size, size, npar)), c(3, 1, 2))
v = exp(-outer(logd[, 1], rep(a[npar + 1], size), "-")) * (e^2)^p
vv = aperm(array(v, c(size, size, npar)), c(3, 1, 2))
dt = rowSums(g_grad(a[1:npar]) * ((p / ev) + (ev - Av) / vv - p *
(Av - ev)^2 / (vv * ev)),
na.rm = TRUE,
dims = 1)
yy = 1 - (A - e) ^ 2 / v
dk = sum(yy / 2, na.rm = TRUE)
dp = sum(yy * log(e ^ 2) / 2, na.rm = TRUE)
c(dt, dk, dp)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.