#' morphological features
#'
#' @description Extract the morphological features
#' @param imgObj a 3D matrix
#' @export
morphologicalFeatures <- function(imgObj,px,py,pz){
if( length(dim(imgObj)) == 2 ) {
n.imgObj <- array(0, dim = c(dim(imgObj),3) )
n.imgObj[,,2] <- imgObj
imgObj <- n.imgObj
}
nVoxel <- dim(imgObj)[1]*dim(imgObj)[2]*dim(imgObj)[3] - sum(is.na(imgObj))
n <- numeric()
n <- table(imgObj)
p <- n/nVoxel
pixelSpacingX <- px; pixelSpacingY <- py; pixelSpacingZ <- pz
#Initialise data table for storing Morphological features
featNames <- c("F_morph.surface", "F_morph.volume", "F_morph.av",
"F_morph.comp.1", "F_morph.comp.2", "F_morph.sph.dispr",
"F_morph.sphericity", "F_morph.asphericity","F_morph.com", #"F_morph.diam",
"L_major","L_minor","L_least","F_morph.pca.elongation","F_morph.pca.flatness")
F_morph <- data.frame(matrix(NA, ncol=length(featNames)))
colnames(F_morph) <- featNames
#Generate roi mask consisting of 0s and 1s
roiObj <- is.finite(imgObj) * 1
#Pad roi mask with an additional boundary of 0s - otherwise the marching cubes algorithm in the misc3d library will not create an appropriate mesh.
roiObj.dim <- dim(roiObj)
roiObj.pad <- array(data=0, dim=roiObj.dim+2)
#Place the original roi mask into the centre of the padded roi
roiObj.pad[2:(roiObj.dim[1] + 1), 2:(roiObj.dim[2] + 1), 2:(roiObj.dim[3] + 1) ] <- roiObj
###
objS <- services()
ppx <-seq(0,px*(dim(roiObj.pad)[1]-1),by=px); ppy <-seq(0,py*(dim(roiObj.pad)[2]-1),by=py); ppz <-seq(0,pz*(dim(roiObj.pad)[3]-1),by=pz)
mesh.triangle <- contour3d(roiObj.pad,level=0.5, x = ppx,y = ppy, z = ppz, engine = "none")
mesh<-objS$triangle2mesh(x = mesh.triangle)
F_morph$F_morph.surface <- objS$StructureSurface(mesh = mesh,measure.unit = "mm2")
###
voxelCoords <-which(!is.na(imgObj),arr.ind = TRUE)
voxelCoordsLenghts <- matrix(nrow=dim(voxelCoords)[1],ncol=3)
voxelCoordsLenghts[,1] <- px * voxelCoords[,1]; voxelCoordsLenghts[,2] <- py * voxelCoords[,2]; voxelCoordsLenghts[,3] <- pz * voxelCoords[,3]
###
F_morph$F_morph.volume <- objS$StructureVolume(mesh,measure.unit = "mm3")
F_morph$F_morph.av <- F_morph$F_morph.surface / F_morph$F_morph.volume
F_morph$F_morph.comp.1 <-F_morph$F_morph.volume / (sqrt(pi) * (sqrt(F_morph$F_morph.surface)^3))
F_morph$F_morph.comp.2 <- 36 * pi * F_morph$F_morph.volume^2 / F_morph$F_morph.surface^3
F_morph$F_morph.sph.dispr <- F_morph$F_morph.surface / (36*pi*F_morph$F_morph.volume^2)^(1/3)
F_morph$F_morph.sphericity <- (36*pi*F_morph$F_morph.volume^2)^(1/3) / F_morph$F_morph.surface
F_morph$F_morph.asphericity <- (F_morph$F_morph.surface^3 / (36*pi*F_morph$F_morph.volume^2))^(1/3) - 1
## stuff to calculate CENTER OF MASS SHIFT
CoMgeom <- numeric()
CoMgeom[1] <- sum(voxelCoords[,1])/nVoxel; CoMgeom[2] <- sum(voxelCoords[,2])/nVoxel; CoMgeom[3] <- sum(voxelCoords[,3])/nVoxel
grayLevels <- numeric()
for (i in seq(1,dim(voxelCoords)[1])){
grayLevels[i] <- imgObj[voxelCoords[i,1],voxelCoords[i,2],voxelCoords[i,3]]
}
voxelCoordsGl <- cbind(voxelCoords,grayLevels)
voxelWeightedCoords <- voxelCoordsGl[,1:3] * voxelCoordsGl[,4]
CoMgl <- numeric()
CoMgl[1] <- sum(voxelWeightedCoords[,1])/sum(voxelCoordsGl[,4])
CoMgl[2] <- sum(voxelWeightedCoords[,2])/sum(voxelCoordsGl[,4])
CoMgl[3] <- sum(voxelWeightedCoords[,3])/sum(voxelCoordsGl[,4])
###
F_morph$F_morph.com <- sqrt((pixelSpacingX*(CoMgeom[1]-CoMgl[1]))^2 + (pixelSpacingY*(CoMgeom[2]-CoMgl[2]))^2 + (pixelSpacingZ*(CoMgeom[3]-CoMgl[3]))^2)
#Principal Compnent Analysis
imgObj.data.frame <- which(x = !is.na(imgObj), arr.ind = T)
imgObj.data.frame_pca <- matrix(ncol = 3,nrow = dim(imgObj.data.frame)[1])
imgObj.data.frame_pca[,1] <- pixelSpacingX*imgObj.data.frame[,1]
imgObj.data.frame_pca[,2] <- pixelSpacingY*imgObj.data.frame[,2]
imgObj.data.frame_pca[,3] <- pixelSpacingZ*imgObj.data.frame[,3]
# apply PCA
imgObj.data.frame_pca <- round(imgObj.data.frame_pca,0)
eig <- eigen(cov(imgObj.data.frame_pca,method = "pearson"),only.values = T)
F_morph$L_major <- 4*sqrt(eig$values[1])
F_morph$L_minor <- 4*sqrt(eig$values[2])
F_morph$L_least <- 4*sqrt(eig$values[3])
F_morph$F_morph.pca.elongation <- sqrt(eig$values[2])/sqrt(eig$values[1])
F_morph$F_morph.pca.flatness <- sqrt(eig$values[3])/sqrt(eig$values[1])
return(F_morph)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.