Description Usage Arguments Value Examples
Calculate how the genotype frequency distribution changes over time
1 2 | sweep_sequence(pop_df, lag_type = "generations", breaks = 10,
lag_gens = 500)
|
pop_df |
Dataframe with column names "Identity", "Population" and "Generation" |
lag_type |
Either "generations" or "proportions" (default "generations") |
breaks |
Number of breaks for determining lag (used only if lag_type = "proportions"; default 10) |
lag_gens |
Lag in terms of generations (used only if lag_type = "generations"; default 500) |
For each generation g in pop_df, excluding the first generation, the output vector quantifies the change in genotype frequencies compared to generation g - lag_gens (by summing the squares of the differences). The length of the output sequence is the same as the number of rows in the input dataframe. The first value is always zero.
1 2 3 4 5 6 7 8 9 10 | library(ggmuller)
library(dplyr)
phylo <- filter(driver_phylo, CellsPerSample == -1)
pop_df <- get_population_df(phylo)
sweep_seq1 <- sweep_sequence(pop_df, lag_type = "proportions", breaks = 6)
lag_gens <- round(length(unique(pop_df$Generation))/6)
sweep_seq2 <- sweep_sequence(pop_df, lag_type = "generations", lag_gens = lag_gens)
identical(sweep_seq1, sweep_seq2)
sweep_df <- data.frame(y = sweep_seq2, x = (1:length(sweep_seq2))/length(sweep_seq2))
plot(y ~ x , data = sweep_df, type = "l")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.