#' Distance to group centroid
#'
#' \code{distance_to_centroid} calculates the distance of each relocation to the
#' centroid of the spatiotemporal group identified by \code{group_pts}. The
#' function accepts a \code{data.table} with relocation data appended with a
#' \code{group} column from \code{group_pts} and centroid columns from
#' \code{centroid_group}. Relocation data should be in planar coordinates
#' provided in two columns representing the X and Y coordinates.
#'
#' The \code{DT} must be a \code{data.table}. If your data is a
#' \code{data.frame}, you can convert it by reference using
#' \code{\link[data.table:setDT]{data.table::setDT}} or by reassigning using
#' \code{\link[data.table:data.table]{data.table::data.table}}.
#'
#' This function expects a \code{group} column present generated with the
#' \code{group_pts} function and centroid coordinate columns generated with the
#' \code{centroid_group} function. The \code{coords} and \code{group} arguments
#' expect the names of columns in \code{DT} which correspond to the X and Y
#' coordinates and group columns. The \code{return_rank} argument controls if
#' the rank of each individual's distance to the group centroid is also
#' returned. The \code{ties.method} argument is passed to
#' \code{data.table::frank}, see details at
#' \code{\link[data.table:frank]{?data.table::frank}}.
#'
#' @param DT input data.table with centroid columns generated by eg.
#' \code{centroid_group}
#' @param group group column name, generated by \code{group_pts}, default
#' 'group'
#' @param return_rank boolean if rank distance should also be returned, default
#' FALSE
#' @param ties.method see \code{\link[data.table:frank]{?data.table::frank}}
#' @inheritParams group_pts
#'
#' @return \code{distance_to_centroid} returns the input \code{DT} appended with
#' a \code{distance_centroid} column indicating the distance to group centroid
#' and, optionally, a \code{rank_distance_centroid} column indicating the
#' within group rank distance to group centroid (if \code{return_rank =
#' TRUE}).
#'
#' A message is returned when \code{distance_centroid} and optional
#' \code{rank_distance_centroid} columns already exist in the input \code{DT},
#' because they will be overwritten.
#'
#' @export
#' @family Distance functions
#' @seealso [centroid_group], [group_pts]
#' @references
#' See examples of using distance to group centroid:
#' * <https://doi.org/10.1016/j.anbehav.2021.08.004>
#' * <https://doi.org/10.1111/eth.12336>
#' * <https://doi.org/10.1007/s13364-018-0400-2>
#'
#' @examples
#' # Load data.table
#' library(data.table)
#' \dontshow{data.table::setDTthreads(1)}
#'
#' # Read example data
#' DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))
#'
#' # Cast the character column to POSIXct
#' DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]
#'
#' # Temporal grouping
#' group_times(DT, datetime = 'datetime', threshold = '20 minutes')
#'
#' # Spatial grouping with timegroup
#' group_pts(DT, threshold = 5, id = 'ID',
#' coords = c('X', 'Y'), timegroup = 'timegroup')
#'
#' # Calculate group centroid
#' centroid_group(DT, coords = c('X', 'Y'), group = 'group', na.rm = TRUE)
#'
#' # Calculate distance to group centroid
#' distance_to_centroid(
#' DT,
#' coords = c('X', 'Y'),
#' group = 'group',
#' return_rank = TRUE
#' )
distance_to_centroid <- function(
DT = NULL,
coords = NULL,
group = 'group',
return_rank = FALSE,
ties.method = NULL) {
# Due to NSE notes in R CMD check
distance_centroid <- rank_distance_centroid <- NULL
if (is.null(DT)) {
stop('input DT required')
}
if (length(coords) != 2) {
stop('coords requires a vector of column names for coordinates X and Y')
}
if (is.null(return_rank)) {
stop('return_rank required')
}
xcol <- data.table::first(coords)
ycol <- data.table::last(coords)
pre <- 'centroid_'
centroid_xcol <- paste0(pre, xcol)
centroid_ycol <- paste0(pre, ycol)
centroid_coords <- c(centroid_xcol, centroid_ycol)
if (any(!(coords %in% colnames(DT)))) {
stop(paste0(
as.character(paste(setdiff(
coords,
colnames(DT)
), collapse = ', ')),
' field(s) provided are not present in input DT'
))
}
if (any(!(DT[, vapply(.SD, is.numeric, TRUE), .SDcols = c(coords)]))) {
stop('coords must be numeric')
}
if (any(!(centroid_coords %in% colnames(DT)
))) {
stop(paste0(
as.character(paste(setdiff(
centroid_coords,
colnames(DT)
), collapse = ', ')),
' field(s) provided are not present in DT, did you run centroid_group?'
))
}
if (any(!(DT[, vapply(.SD, is.numeric, TRUE), .SDcols = c(centroid_coords)]))) {
stop('centroid coords must be numeric')
}
if ('distance_centroid' %in% colnames(DT)) {
message('distance_centroid column will be overwritten by this function')
data.table::set(DT, j = 'distance_centroid', value = NULL)
}
DT[, distance_centroid :=
sqrt((.SD[[xcol]] - .SD[[centroid_xcol]])^2 +
(.SD[[ycol]] - .SD[[centroid_ycol]])^2)]
if (return_rank) {
if (is.null(group)) {
stop('group column name required')
}
if (!group %in% colnames(DT)) {
stop('group column not present in input DT, did you run group_pts?')
}
if ('rank_distance_centroid' %in% colnames(DT)) {
message(
'rank_distance_centroid column will be overwritten by this function'
)
data.table::set(DT, j = 'rank_distance_centroid', value = NULL)
}
DT[, rank_distance_centroid :=
data.table::frank(distance_centroid, ties.method = ties.method),
by = c(group)]
}
return(DT[])
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.