#' A box and whiskers plot (in the style of Tukey)
#'
#' The boxplot compactly displays the distribution of a continuous variable.
#' It visualises five summary statistics (the median, two hinges
#' and two whiskers), and all "outlying" points individually.
#'
#' @inheritParams ggplot2::geom_boxplot
#' @inheritSection ggplot2::geom_boxplot Summary statistics
#' @param width.errorbar the width of errorbar (default 0.7)
#' @param stat the statistical transformation to use on the data for this layer
#' @param show.errorbar whether to show errorbar (default TRUE)
#'
#' @eval ggplot2:::rd_aesthetics("geom", "boxplot")
#' @seealso [geom_quantile()] for continuous `x`,
#' [geom_violin()] for a richer display of the distribution, and
#' [geom_jitter()] for a useful technique for small data.
#'
#' @references
#' 1. McGill, R., Tukey, J. W. and Larsen, W. A. (1978) Variations of box plots.
#' The American Statistician 32, 12-16.
#' @example R/examples/ex-geom_boxplot2.R
#' @import ggplot2
#' @importFrom grid grobTree
#' @export
geom_boxplot2 <- function(mapping = NULL, data = NULL,
stat = "boxplot", position = "dodge2",
...,
outlier.colour = NULL,
outlier.color = NULL,
outlier.fill = NULL,
outlier.shape = 19,
outlier.size = 1.5,
outlier.stroke = 0.5,
outlier.alpha = NULL,
show.errorbar = TRUE,
width.errorbar = 0.7,
notch = FALSE,
notchwidth = 0.5,
varwidth = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE) {
# varwidth = TRUE is not compatible with preserve = "total"
if (is.character(position)) {
if (varwidth == TRUE) position <- position_dodge2(preserve = "single")
} else {
if (identical(position$preserve, "total") & varwidth == TRUE) {
warning("Can't preserve total widths when varwidth = TRUE.", call. = FALSE)
position$preserve <- "single"
}
}
layer(
data = data,
mapping = mapping,
stat = stat,
geom = GeomBoxplot2,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
outlier.colour = outlier.color %||% outlier.colour,
outlier.fill = outlier.fill,
outlier.shape = outlier.shape,
outlier.size = outlier.size,
outlier.stroke = outlier.stroke,
outlier.alpha = outlier.alpha,
show.errorbar = show.errorbar,
width.errorbar = width.errorbar,
notch = notch,
notchwidth = notchwidth,
varwidth = varwidth,
na.rm = na.rm,
...
)
)
}
# ' @format NULL
# ' @usage NULL
#' @export
GeomBoxplot2 <- ggproto("GeomBoxplot2", Geom,
# need to declare `width`` here in case this geom is used with a stat that
# doesn't have a `width` parameter (e.g., `stat_identity`).
extra_params = c("na.rm", "width"),
setup_data = function(data, params) {
data$width <- data$width %||%
params$width %||% (resolution(data$x, FALSE) * 0.9)
data$outliers <- NULL
if (!is.null(data$outliers)) {
suppressWarnings({
out_min <- vapply(data$outliers, min, numeric(1))
out_max <- vapply(data$outliers, max, numeric(1))
})
data$ymin_final <- pmin(out_min, data$ymin)
data$ymax_final <- pmax(out_max, data$ymax)
}
# if `varwidth` not requested or not available, don't use it
if (is.null(params) || is.null(params$varwidth) || !params$varwidth || is.null(data$relvarwidth)) {
data$xmin <- data$x - data$width / 2
data$xmax <- data$x + data$width / 2
} else {
# make `relvarwidth` relative to the size of the largest group
data$relvarwidth <- data$relvarwidth / max(data$relvarwidth)
data$xmin <- data$x - data$relvarwidth * data$width / 2
data$xmax <- data$x + data$relvarwidth * data$width / 2
}
# data$width <- NULL
if (!is.null(data$relvarwidth)) data$relvarwidth <- NULL
data
},
draw_group = function(data, panel_params, coord, fatten = 2,
outlier.colour = NULL, outlier.fill = NULL,
outlier.shape = 19,
outlier.size = 1.5, outlier.stroke = 0.5,
outlier.alpha = NULL,
show.errorbar = TRUE,
width.errorbar = 0.7,
notch = FALSE, notchwidth = 0.5, varwidth = FALSE) {
common <- list(
colour = data$colour,
linewidth = data$linewidth,
linetype = data$linetype,
fill = alpha(data$fill, data$alpha),
group = data$group
)
whiskers <- new_data_frame(c(
list(
x = c(data$x, data$x),
xend = c(data$x, data$x),
y = c(data$upper, data$lower),
yend = c(data$ymax, data$ymin),
alpha = c(NA_real_, NA_real_)
),
common
), n = 2)
box <- new_data_frame(c(
list(
xmin = data$xmin,
xmax = data$xmax,
ymin = data$lower,
y = data$middle,
ymax = data$upper,
ynotchlower = ifelse(notch, data$notchlower, NA),
ynotchupper = ifelse(notch, data$notchupper, NA),
notchwidth = notchwidth,
alpha = data$alpha
),
common
))
errorbar <- new_data_frame(c(
list(
xmin = data$x - width.errorbar / 2,
xmax = data$x + width.errorbar / 2,
x = data$x,
ymin = data$ymin,
ymax = data$ymax,
alpha = data$alpha
),
common
))
grob_whiskers <- GeomSegment$draw_panel(whiskers, panel_params, coord)
grob_errorbar <- NULL
if (show.errorbar) {
grob_errorbar <- GeomErrorbar$draw_panel(errorbar, panel_params, coord)
}
# if (!is.null(data$outliers) && length(data$outliers[[1]] >= 1)) {
# outliers <- new_data_frame(
# y = data$outliers[[1]],
# x = data$x[1],
# colour = outlier.colour %||% data$colour[1],
# fill = outlier.fill %||% data$fill[1],
# shape = outlier.shape %||% data$shape[1],
# size = outlier.size %||% data$size[1],
# stroke = outlier.stroke %||% data$stroke[1],
# fill = NA,
# alpha = outlier.alpha %||% data$alpha[1],
# stringsAsFactors = FALSE
# )
# outliers_grob <- GeomPoint$draw_panel(outliers, panel_params, coord)
# } else {
# outliers_grob <- NULL
# }
ggplot2:::ggname("geom_boxplot2", grobTree(
# outliers_grob,
grob_errorbar,
# grob_whiskers,
GeomCrossbar$draw_panel(box, fatten = fatten, panel_params, coord)
))
},
draw_key = draw_key_boxplot,
default_aes = aes(
weight = 1, colour = "grey20", fill = "white", linewidth = 0.5,
alpha = NA, shape = 19, linetype = "solid"
),
required_aes = c("x", "lower", "upper", "middle", "ymin", "ymax")
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.