## Known issues
# 2015 patch is not applied. LE, LH will lost some good values.
timename <- c("TIMESTAMP_START", "TIMESTAMP_END")
# except date, all variables were double
# Update 20191216 (FULLSET used, rename variabls)
# SW_OUT_F: SW_OUT
# LW_OUT_F: LW_OUT
# non_QC variables
# "SW_OUT_QC", "LW_OUT_QC", "NETRAD_QC", "USTAR_QC"
vars_val <- c(
"SW_IN_F", # incoming Shortwave Radiation | W/m2
"SW_OUT", # outgoing Shortwave Radiation | W/m2
"LW_IN_F", # incoming Longwave Radiation | W/m2
"LW_OUT", # outgoing Longwave Radiation | W/m2
"NETRAD", # Rn, NET Radiation | W/m2
"LE_F_MDS", # Latent heat flux | W/m2
"LE_CORR", # LE_F_MDS_QC quality flag for LE_F_MDS, LE_CORR
"H_F_MDS", # Sensible heat flux | W/m2
"H_CORR", # corrected H_F_MDS by energy balance closure correction factor, QC as H_F_MDC_QC
"G_F_MDS", # Soil heat flux | W/m2, could be negative
"PA_F", # Atmospheric pressure | kPa
"P_F", # Precipitation | mm
"VPD_F", # Vapor Pressure Deficit | hPa
"WS_F", # Wind Speed | m/s
"WD", # Wind Direction | Decimal degrees
"USTAR", # Friction velocity | m/s
"RH", # Relative Humidity | %
"PPFD_IN", # incoming Photosynthetic photon flux density | W/m2
"CO2_F_MDS", # CO2 mole fraction | umol CO2/mol
"TA_F", # air temperature | degC
"TS_F_MDS_1", # Soil temperature, '#' increases with the depth, 1 is shallowest | degC
"SWC_F_MDS_1", # Soil water content | %
"NEE_VUT_REF", # Net Ecosystem Exchange, using Variable Ustar Threshold (VUT) | umol CO2/mol
# for each year, reference selected on the basis of the model
# efficiency (MEF). The MEF analysis is repeated for each time aggregation
"RECO_DT_VUT_REF", # daytime partitioning Ecosystem Respiration | umol CO2/mol
"RECO_NT_VUT_REF", # nighttime partitioning Ecosystem Respiration | umol CO2/mol
"GPP_DT_VUT_REF", # daytime partitioning Gross Primary Production, | umol CO2/mol
"GPP_NT_VUT_REF" # nighttime partitioning Gross Primary Production, | umol CO2/mol
)
################################################################################
vars_QC <- paste0(vars_val, "_QC")
vars_QC[match(c("LE_CORR_QC", "H_CORR_QC"), vars_QC)] <- c("LE_F_MDS_QC", "H_F_MDS_QC")
vars_QC[24:27] <- vars_QC[23] # RECO, GPP share the same QC with NEE
vars_all <- c(vars_val, vars_QC) # unique
# NA VALUES ---------------------------------------------------------------
#
# variables x < 0 set to be NA, values can't be negative
var_no_negative <- c(
"SW_IN_F", "SW_OUT_F", "LW_IN_F", "LW_OUT_F",
"PA_F", "PPFD_IN",
"P_F", "VPD_F", "WS_F", "WD", "USTAR", "CO2_F_MDS", "SWC_F_MDS_1",
"RECO_DT_VUT_REF", "RECO_NT_VUT_REF"
)
# vars_0na <- paste(c('SW_', 'LW_', 'PPFD_', 'PA_'),
# collapse = "|") %>% {vars_val[grep(., vars_val)]} #, 'GPP_'
# variables x < 0 set to be NA, except vars_0na variables
# fixed 17 Dec' 2017
# vars_noNeg <- vars_val[-grep("TA_F|TS_F|NEE|G_F_MDS|GPP|LE|H|NETRAD", vars_val)] %>% setdiff(vars_0na)
# all variables: vars_noNeg + vars_0na + "TA_F|TS_F|NEE|G_F_MDS"
#
# else variables (TA_F, TS_F, NEE) x < -9000 set to be NA
################################################################################
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.