rm(list = ls())
library(invgamma)
library(MASS)
library(nlme)
library(invgamma)
library(MASS)
library(FastGP)
library(emulator)
source('R/FUNC_woodchan_samples.R')
source('R/FUNC_paramater_estimates.R')
source('R/DATA_generate_simulation.R')
source('R/FUNC_Gibbs_Sampler.R')
source('R/FUNC_Gibbs_Sampler_r.R')
Rcpp::sourceCpp("src/FUNC_paramater_estimates_c.cpp")
read_data = function(i){
X_initial = read.csv(file = paste0("t20/X_data_n100_t20_rep",i,".csv"), header = T)
Y = as.matrix(read.csv(file = paste0("t20/Y_data_n100_t20_rep",i,".csv"), header = T))
T_val = 20
X = list()
range = nrow(X_initial)/20
k = 1
for(j in 1:range){
X[[j]] = as.matrix(X_initial[(k:(j*T_val)), ])
k = (j*T_val)+1
}
return(list("X" = X, "y" = Y, "T_val" = T_val))
}
i = 2
data = read_data(i)
print("GOT DATA")
results = gibbs_sampler_r(data_gibbs = data,
B = 1000,
xi_initial = runif(data$T_val, -1, 1),
burn_in = 0.5,
NNGP = FALSE,
n_to_store = 200)
save(results, file = "TESTRESULTS100.rda")
data_gibbs = data
B = 100000
xi_initial = runif(data$T_val, -1, 1)
burn_in = 0.5
NNGP = FALSE
n_to_store = 20000
a = as.matrix(data$X[[1]])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.