#' Feature Transformation -- VectorIndexer (Estimator)
#'
#' Indexing categorical feature columns in a dataset of Vector.
#'
#' @template roxlate-ml-feature-input-output-col
#' @template roxlate-ml-feature-transformer
#' @template roxlate-ml-feature-estimator-transformer
#' @template roxlate-ml-feature-handle-invalid
#' @param max_categories Threshold for the number of values a categorical feature can take. If a feature is found to have > \code{max_categories} values, then it is declared continuous. Must be greater than or equal to 2. Defaults to 20.
#'
#' @export
ft_vector_indexer <- function(x, input_col = NULL, output_col = NULL,
handle_invalid = "error",
max_categories = 20,
uid = random_string("vector_indexer_"), ...) {
check_dots_used()
UseMethod("ft_vector_indexer")
}
ml_vector_indexer <- ft_vector_indexer
#' @export
ft_vector_indexer.spark_connection <- function(x, input_col = NULL, output_col = NULL,
handle_invalid = "error",
max_categories = 20,
uid = random_string("vector_indexer_"), ...) {
.args <- list(
input_col = input_col,
output_col = output_col,
handle_invalid = handle_invalid,
max_categories = max_categories,
uid = uid
) %>%
c(rlang::dots_list(...)) %>%
validator_ml_vector_indexer()
estimator <- spark_pipeline_stage(
x, "org.apache.spark.ml.feature.VectorIndexer",
input_col = .args[["input_col"]], output_col = .args[["output_col"]], uid = .args[["uid"]]
) %>%
jobj_set_param("setHandleInvalid", .args[["handle_invalid"]], "2.3.0", "error") %>%
invoke("setMaxCategories", .args[["max_categories"]]) %>%
new_ml_vector_indexer()
estimator
}
#' @export
ft_vector_indexer.ml_pipeline <- function(x, input_col = NULL, output_col = NULL,
handle_invalid = "error",
max_categories = 20,
uid = random_string("vector_indexer_"), ...) {
stage <- ft_vector_indexer.spark_connection(
x = spark_connection(x),
input_col = input_col,
output_col = output_col,
max_categories = max_categories,
uid = uid,
...
)
ml_add_stage(x, stage)
}
#' @export
ft_vector_indexer.tbl_spark <- function(x, input_col = NULL, output_col = NULL,
handle_invalid = "error",
max_categories = 20,
uid = random_string("vector_indexer_"), ...) {
stage <- ft_vector_indexer.spark_connection(
x = spark_connection(x),
input_col = input_col,
output_col = output_col,
max_categories = max_categories,
uid = uid,
...
)
if (is_ml_transformer(stage)) {
ml_transform(stage, x)
} else {
ml_fit_and_transform(stage, x)
}
}
new_ml_vector_indexer <- function(jobj) {
new_ml_estimator(jobj, class = "ml_vector_indexer")
}
new_ml_vector_indexer_model <- function(jobj) {
new_ml_transformer(jobj, class = "ml_vector_indexer_model")
}
validator_ml_vector_indexer <- function(.args) {
.args <- validate_args_transformer(.args)
.args[["max_categories"]] <- cast_scalar_integer(.args[["max_categories"]])
.args
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.