## ----setup, include=FALSE------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
library(fbAntares)
library(manipulateWidget)
library(rAmCharts)
library(pipeR)
library(DT)
## ---- eval=FALSE---------------------------------------------------------
#
# #Convert domains from PTDF file, save the output in the directory "model1"
# computeFB(PTDF = system.file("/input/ptdf/ptdfraw.csv", package = "fbAntares"), verbose = 1, nbFaces = 75, outputName = "D:/model1")
#
# #Generate reports from the output of computeFB
# domainesFB <- readRDS("D:/model1/domainesFB.rds")
# for (day in domainesFB$idDayType) {
# generateReportFb(dayType = day allFB = domainesFB)
# }
#
# # To check on the modelization results
# getMaxImportExport(domainesFB)
#
# #Set antares study path
# antaresRead::setSimulationPath("D:/exemple_test", 0)
#
# #Create flow-based time series considering their correlations with other inputs of an Antares Study, save the output in the directory "model1"
# calendar <- system.file("calendar/calendar.txt", package = "fbAntares")
# createFBTS(probabilityMatrix = probabilityMatrix, multiplier = multiplier,
# calendar = calendar, firstDay = firstDay, outputPath = "D:/model1")
#
#
# #Set setFlowbased directory path
# setFlowbasedPath(path = "D:/model1")
#
#
#
# #Run shiny application to visualize the results of the convertion
# runAppError()
#
# #Initialize the Antares study
# initFlowBased(scenario = rep(1:200, times = 5))
#
## ----eval = FALSE--------------------------------------------------------
# ## Example of computeFB with cwe_at
# computeFB(PTDF = system.file("/input/ptdf/ptdfraw.csv", package = "fbAntares"),
# reports = FALSE, areaName = "cwe_at",
# hubDrop = list(NL = c("BE", "DE", "FR", "AT")),
# nbFaces = 75, dayType = 1,
# fixFaces = data.table(func = "min", zone = "BE"))
#
# ## Another example with more arguments and faces clustering only on most important hours
# computeFB(PTDF = system.file("testdata/2019-07-18ptdfraw.csv",
# package = "fbAntares"),
# reports = FALSE, areaName = "cwe_at",
# hubDrop = list(NL = c("BE", "DE", "FR", "AT")),
# nbFaces = 75, dayType = 1,
# clusteringHours = c(7:10, 17:19), nbLines = 50000,
# maxiter = 20, thresholdIndic = 95,
# fixFaces = data.table(func = "min", zone = "BE"))
#
## ----eval = FALSE--------------------------------------------------------
# ## Example of computeFB with cwe_at and virtual area
# computeFB(PTDF = system.file("/input/ptdf/ptdfraw.csv", package = "fbAntares"),
# reports = FALSE, areaName = "cwe_at",
# hubDrop = list(NL = c("BE", "DE", "FR", "AT")),
# nbFaces = 75, dayType = 1,
# fixFaces = data.table(func = "min", zone = "BE"),
# virtualFBarea = TRUE)
## ------------------------------------------------------------------------
#Generate reports from the output of computeFB
domainesFB <- readRDS(system.file("/input/model/antaresInput/domainesFB.RDS", package = "fbAntares"))
# To check on the modelization results
maxImportExport <- getMaxImportExport(domainesFB, writecsv = F)
# for a good visualisation in this vignette :
DT::datatable(maxImportExport, options = list(scrollX = TRUE))
## ---- eval=FALSE---------------------------------------------------------
#
# # build probabilityMatrix with the function getProbability() from the package
# # fbClust
# # select an antaresStudy with the function setSimulationPath() from the package antaresRead
#
# # rename columns of the probability matrix
#
# matProb <- setNamesProbabilityMatrix(probabilityMatrix,
# c("FR_load", "DE_wind", "DE_solar"),
# c("fr@load", "de@wind", "de@solar"))
#
# # set installed capacity for Wind (addition of onshore and offshore) and solar
# multiplier <- data.frame(variable = c("fr@load", "de@wind", "de@solar"),
# coef = c(1, 71900, 61900))
#
# # set Calendar
# firstDay <- identifyFirstDay(opts = antaresStudy)
# calendar <- system.file("calendar/calendar.csv", package = "fbAntares")
#
# # create ts.txt in D:/model1
# ts <- createFBTS(opts = antaresStudy, probabilityMatrix = probabilityMatrix,
# multiplier = multiplier, calendar = calendar,
# firstDay = firstDay, outputPath = "D:/model1")
#
#
## ------------------------------------------------------------------------
ts <- fread(system.file("testdata/antaresInput/ts.txt", package = "fbAntares"), header = T)
statsFBts <- getStatsFBts(ts, calendar = system.file("calendar/calendar.txt",
package = "fbAntares"), output = "summary")
# for visualization in the vignette :
datatable(statsFBts, options = list(scrollX = TRUE))
## ---- eval = FALSE-------------------------------------------------------
# # Specify a repository
# setFlowbasedPath(path = "C:/PATH/TO/INPUT")
## ---- eval = FALSE-------------------------------------------------------
# runAppError()
## ---- fig.width= 7, fig.height= 7, warning=FALSE-------------------------
# For example, using the short model available in the package
library(fbAntares)
setFlowbasedPath(model = "antaresInput")
plotFB(hour = 5:6, dayType = 1, country1 = c("FR", "DE"),
country2 = c("DE", "NL"), areaName = "cwe_at", export = T)
## ---- eval=FALSE---------------------------------------------------------
# antaresRead::setSimulationPath("D:/exemple_test", 0)
#
# # initialisation of flow-based study
# initFlowBased(scenario = rep(1:200, times = 5))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.