Description Usage Arguments Details Value Author(s) References See Also Examples
Returns WAIC.
1 | jm.WAIC(bayes.fit)
|
bayes.fit |
a fit of the joint model using |
WAIC is computed using -2*(lppd - pwaic), where lppd = log pointwise predictive density, and pwaic = effective number of parameters. The effective number of parameters is estimated using the variance of individual terms in the log predictive density summed over the data points. See Gelman et al. (2014) for details.
Returns lppd, pwaic (effective number of parameters), and WAIC.
Shahedul Khan <khan@math.usask.ca>
Gelman A, Hwang J, and Vehtari A, Understanding predictive information criteria for bayesian models, Statistics and Computing 24: 997-1016, 2014.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | data(pbc.long)
data(pbc.surv)
agec<-pbc.surv$age-mean(pbc.surv$age)
pbc.surv0<-data.frame(pbc.surv,agec=agec)
# use natural splines
lme.fit<-lme(log(bilirubin)~drug+ns(futime,2),data=pbc.long,
random=~ns(futime,2)|id)
surv.fit<-coxph(Surv(st,status2)~drug*agec,data=pbc.surv0,x=TRUE)
# use rand.model="ns"
jmfit.w<-jmreg.aft(surv.fit=surv.fit,lme.fit=lme.fit,
surv.model="weibull",rand.model="ns",timevar="futime",
n.chain=2,n.adapt = 5000, n.burn = 15000,
n.iter = 150000, n.thin = 5)
jm.WAIC(jmfit.w)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.