jm.WAIC: Computes WAIC for Bayesian fit of the joint model

Description Usage Arguments Details Value Author(s) References See Also Examples

View source: R/JMwaic.R

Description

Returns WAIC.

Usage

1
jm.WAIC(bayes.fit)

Arguments

bayes.fit

a fit of the joint model using jmreg.aft.

Details

WAIC is computed using -2*(lppd - pwaic), where lppd = log pointwise predictive density, and pwaic = effective number of parameters. The effective number of parameters is estimated using the variance of individual terms in the log predictive density summed over the data points. See Gelman et al. (2014) for details.

Value

Returns lppd, pwaic (effective number of parameters), and WAIC.

Author(s)

Shahedul Khan <khan@math.usask.ca>

References

Gelman A, Hwang J, and Vehtari A, Understanding predictive information criteria for bayesian models, Statistics and Computing 24: 997-1016, 2014.

See Also

jmreg.aft, jm.DIC, jm.summary

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
  data(pbc.long)
  data(pbc.surv)
  agec<-pbc.surv$age-mean(pbc.surv$age)
  pbc.surv0<-data.frame(pbc.surv,agec=agec)
# use natural splines
  lme.fit<-lme(log(bilirubin)~drug+ns(futime,2),data=pbc.long,
         random=~ns(futime,2)|id)
  surv.fit<-coxph(Surv(st,status2)~drug*agec,data=pbc.surv0,x=TRUE)
# use rand.model="ns"
  jmfit.w<-jmreg.aft(surv.fit=surv.fit,lme.fit=lme.fit,
          surv.model="weibull",rand.model="ns",timevar="futime",
          n.chain=2,n.adapt = 5000, n.burn = 15000, 
          n.iter = 150000, n.thin = 5)
  jm.WAIC(jmfit.w)

sa4khan/AFTjmr documentation built on March 12, 2020, 1:24 a.m.