Description Usage Arguments Details Value See Also Examples
View source: R/JMrandomeffects.R
Returns posterior means/medians of the random effects. Note that the random effects are shared between the
longitudinal and survival components, and the link between these two processes via the random effects
is commonly known as latent association. The formulation of the joint model is
is described in jmreg.aft
.
1 | jm.reffects(bayes.fit, posterior.mean = TRUE)
|
bayes.fit |
fit of the joint model using |
posterior.mean |
returns posterior means if TRUE, and posterior medians if FALSE. |
The random effects are monitored in MCMC simulations.
Returns posterior means/medians of the random effects.
jmreg.aft
, jm.resid
, jm.summary
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | data(pbc.long)
data(pbc.surv)
agec<-pbc.surv$age-mean(pbc.surv$age)
pbc.surv0<-data.frame(pbc.surv,agec=agec)
# use natural splines
lme.fit<-lme(log(bilirubin)~drug+ns(futime,2),data=pbc.long,
random=~ns(futime,2)|id)
surv.fit<-coxph(Surv(st,status2)~drug*agec,data=pbc.surv0,x=TRUE)
# use rand.model="ns"
jmfit.w<-jmreg.aft(surv.fit=surv.fit,lme.fit=lme.fit,
surv.model="weibull",rand.model="ns",timevar="futime",
n.chain=2,n.adapt = 5000, n.burn = 15000,
n.iter = 150000, n.thin = 5)
jm.reffects(jmfit.w)
jm.reffects(jmfit.w,posterior.mean=FALSE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.