CNORfeeder-package | R Documentation |
CNORfeeder permits to extend a network derived from literature with links derived strictly from the data via various inference methods using information on physical interactions of proteins to guide and validate the integration of links. The package is designed to be integrated with CellNOptR.
Package: | CNORfeeder |
Type: | Package |
Version: | 1.0.0. |
Date: | 2012-11-22 |
License: | GPLv2 |
LazyLoad: | yes |
F. Eduati Maintainer: F. Eduati <eduati@ebi.ac.uk>
F. Eduati, J. De Las Rivas, B. Di Camillo, G. Toffolo, J. Saez-Rodriguez. Integrating literature-constrained and data-driven inference of signalling networks. Bioinformatics, 28(18):2311-2317, 2012.
library(CNORfeeder) # this is an example of the main steps of the integrated CellNOptR - CNORfeeder pipeline # load the data already formatted as CNOlist data(CNOlistDREAM,package="CellNOptR") # load the model (PKN) already in the CNO format data(DreamModel,package="CellNOptR") # see CellNOptR documentation to import other data/PKNs) # A. INFERENCE - CNORfeeder # FEED inference: codified in Boolean Tables BTable <- makeBTables(CNOlist=CNOlistDREAM, k=2, measErr=c(0.1, 0)) # B. COMPRESSION - CellNOptR # preprocessing step model<-preprocessing(data=CNOlistDREAM, model=DreamModel) # C. INTEGRATION - CNORfeeder # integration with the compressed model modelIntegr <- mapBTables2model(BTable=BTable,model=model,allInter=TRUE) # see example in ?MapDDN2Model to use other reverse-engineering methods # D. WEGHTING - CNORfeeder # integrated links are weighted more according to the integratin factor integrFac modelIntegrWeight <- weighting(modelIntegr=modelIntegr, PKNmodel=DreamModel, CNOlist=CNOlistDREAM, integrFac=10) # E. TRAINING - CellNOptR # initBstring<-rep(1,length(modelIntegr$reacID)) # training to data using genetic algorithm (run longer to obtain better results) DreamT1opt<-gaBinaryT1W( CNOlist=CNOlistDREAM, model=modelIntegrWeight, maxGens=2, popSize=5, verbose=FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.