##------------------------------------------------------------------
## -- WATER DENSITY --
##------------------------------------------------------------------
water_density = function(wt,
tds = 0,
tss = 0,
sal = 0,
sg = 2.5,
method = c("gill_m", "tilton"))
{
method = match.arg(method)
## original
a0 = 999.842594
a1 = 6.79395199e-2
a2 = -9.095290e-3
a3 = 1.001685e-4
a4 = -1.120083e-6
a5 = 6.5363319995e-9
switch(method,
gill_m = {
##----------------------------------------------------
## -- WATER DENSITY --
##----------------------------------------------------
## modificado
a0 = 999.8701
a1 = 6.732158e-2
## equation 1
rho_wt = a0 + a1*wt + a2*wt^2 + a3*wt^3 + a4*wt^4 + a5*wt^5
## The total solid, includes wto parts:
## 1 The total suspended solid (tss) and
## 2 the total dissolved solid (tds).
g = (1 - 1/sg) * 10^(-3)
b0 = 8.221e-4
b1 = -3.87e-6
b2 = 4.99e-8
## equation 2
rho_ts = tss*g + tds*(b0 + b1*wt + b2*wt^2)
##----------------------------------------------------
## -- WATER DENSITY INCREMENT DUE TO SALINITY --
##----------------------------------------------------
A = 0.824493 - 4.0899e-3*wt + 7.6438e-5*wt^2 - 8.2467e-7*wt^3 +
5.3875e-9*wt^4
B = -5.72466e-3 + 1.0227e-4*wt - 1.6546e-6*wt^2
C = 4.8314e-4
## equation 3
rho_sal = A*sal + B*sal^(3/2) + C*sal^2
##----------------------------------------------------
## -- DENSITY Kg/m^3 --
##----------------------------------------------------
rho = (rho_ts + rho_wt + rho_sal)
}, #gill
tilton = {
A = (wt - 3.9863)^2
B = 508929.2
C = wt + 288.9414
D = wt + 68.12963
## equation 4
rho = (1 - A/B * C/D) * 1000
}# tilton
)#end switch
return(rho)
}#end water_density
#water_density(0:14, method="g")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.