add_one_mat | Efficiently calculates the inverse of a super-matrix |
aic_mcml | Calculates the Akaike Information Criterion for the GLMM |
bessel1 | Bessel covariance function |
blockmat | Create block matrix |
confint_search | Confidence interval search procedure |
Covariance | R6 Class representing a covariance function and data |
cross_df | Generate crossed block structure |
cycles | Generates all the orderings of a |
Design | A GLMM Design |
DesignSpace | A GLMM Design Space |
d_lik_optim | Optimises the log-likelihood of the random effects |
fexp | Exponential covariance function |
f_lik_grad | Calculates the gradient of the full log-likelihood |
f_lik_hess | Calculates the Hessian of the full log-likelihood |
f_lik_optim | Simulated likelihood maximisation for the GLMM |
genBlockD | Generates a block of the random effects covariance matrix |
genD | Generates the covariance matrix of the random effects |
glmmr-package | Design and analysis for generalised linear mixed models in R |
gr | Group indicator covariance function |
GradRobustStep | Hill-Climbing algorithm to identify optimal GLMM design |
l_lik_hess | Optimises the log-likelihood of the observations conditional... |
l_lik_optim | Optimises the log-likelihood of the observations conditional... |
log_factorial_approx | Approximation to the log factorial |
log_mv_gaussian_pdf | Log multivariate Gaussian probability density funciton |
log_mvnd | Log density of multivariate normal distribution |
match_rows | Generate matrix mapping between data frames |
matern | Matern covariance function |
mcnr_family | Returns the file name and type for MCNR function |
mcnr_step | Newton-Raphson step for the MCMCML algorithm |
MeanFunction | R6 Class representing a mean function function and data |
myglm | Simplified version of fastglm's 'fastglm' function |
nelder | Generates a block experimental structure using Nelder's... |
nest_df | Generate nested block structure |
parallel_crt | Generate a parallel cluster design |
permutation_test_impl | Generates realisations of the permutational test statistic... |
pexp | Power exponential covariance function |
plot.glmmr.sim | Plotting method for glmmr.sim |
print.glmmr.sim | Prints a glmmr simuation output |
print.mcml | Prints an mcml fit output |
progress_bar | Generates a progress bar |
qscore_impl | The quasi-score statistic for a generalised linear mixed... |
rcpparma_hello_world | Set of functions in example RcppArmadillo package |
relist | Generate a list of a given structure with new values |
remove_one_many_mat | Efficiently calculate the inverse of a sub-matrix |
sqexp | Squared exponential covariance function |
staircase_crt | Generate a staircase/diagonal trial design |
stepped_wedge | Generate a stepped-wedge design |
summarize.dfbeta | Method to summarise DFBETA output |
summarize.errors | Method to summarise errors |
summarize.stats | Method to summarise statistics |
summary.mcml | Summarises an mcml fit output |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.