confint_search | R Documentation |
confint_search( start, b, Xnull_, y_, tr_, new_tr_mat, xb, invS, family, family2, nsteps = 1000L, weight = TRUE, alpha = 0.05, verbose = TRUE )
start |
Numeric value indicating the starting value for the search procedure |
b |
Numeric value indicating the parameter estimate |
Xnull_ |
Numeric matrix. The covariate design matrix with the treatment variable removed |
y_ |
Numeric vector of response variables |
tr_ |
Numeric vector. The original random allocation (0s and 1s) |
new_tr_mat |
A matrix. Each column is a new random treatment allocation with 1s (treatment group) and 0s (control group) |
xb |
A numeric vector of fitted linear predictors |
invS |
A matrix. If using the weighted statistic then it should be the inverse covariance matrix of the observations |
family |
A stats[family] object |
family2 |
A string naming the link function |
nsteps |
Integer specifying the number of steps of the search procedure |
weight |
Logical indicating whether to use the weighted (TRUE) or unweighted (FALSE) test statistic |
alpha |
The function generates (1-alpha)*100 \itemverboseLogical indicating whether to provide detailed output. |
The estimated confidence interval bound Search for the bound of a confidence interval using permutation test statistics
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.