confint_search: Confidence interval search procedure

View source: R/RcppExports.R

confint_searchR Documentation

Confidence interval search procedure

Usage

confint_search(
  start,
  b,
  Xnull_,
  y_,
  tr_,
  new_tr_mat,
  xb,
  invS,
  family,
  family2,
  nsteps = 1000L,
  weight = TRUE,
  alpha = 0.05,
  verbose = TRUE
)

Arguments

start

Numeric value indicating the starting value for the search procedure

b

Numeric value indicating the parameter estimate

Xnull_

Numeric matrix. The covariate design matrix with the treatment variable removed

y_

Numeric vector of response variables

tr_

Numeric vector. The original random allocation (0s and 1s)

new_tr_mat

A matrix. Each column is a new random treatment allocation with 1s (treatment group) and 0s (control group)

xb

A numeric vector of fitted linear predictors

invS

A matrix. If using the weighted statistic then it should be the inverse covariance matrix of the observations

family

A stats[family] object

family2

A string naming the link function

nsteps

Integer specifying the number of steps of the search procedure

weight

Logical indicating whether to use the weighted (TRUE) or unweighted (FALSE) test statistic

alpha

The function generates (1-alpha)*100

\item

verboseLogical indicating whether to provide detailed output.

The estimated confidence interval bound Search for the bound of a confidence interval using permutation test statistics


samuel-watson/glmmr documentation built on July 27, 2022, 10:30 p.m.