aic_mcml | R Documentation |
Calculates the Akaike Information Criterion for the GLMM
aic_mcml( Z, X, y, u, family, link, B, N_dim, N_func, func_def, N_var_func, col_id, N_par, sum_N_par, cov_data, beta_par, cov_par )
Z |
Matrix Z of the GLMM |
X |
Matrix X of the GLMM |
y |
Vector of observations |
u |
Matrix of samples of the random effects. Each column is a sample. |
family |
Character specifying the family |
link |
Character specifying the link function |
B |
Integer specifying the number of blocks in the matrix |
N_dim |
Vector of integers, which each value specifying the dimension of each block |
N_func |
Vector of integers specifying the number of functions in the covariance function for each block. |
func_def |
Matrix of integers where each column specifies the function definition for each function in each block. |
N_var_func |
Matrix of integers of same size as 'func_def' with each column specying the number of variables in the argument to each function in each block |
col_id |
3D array (cube) of integers of dimension length(func_def) x max(N_var_func) x B where each slice the respective column indexes of 'cov_data' for each function in the block |
N_par |
Matrix of integers of same size as 'func_def' with each column specifying the number of parameters in the function in each block |
cov_data |
3D array (cube) holding the data for the covariance matrix where each of the B slices is the data required for each block |
beta_par |
Vector specifying the values of the mean function parameters |
cov_par |
Vector specifying the values of the covariance parameters |
A matrix of the Hessian for each parameter
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.