d_lik_optim | R Documentation |
Optimises the log-likelihood of the random effects
d_lik_optim( B, N_dim, N_func, func_def, N_var_func, col_id, N_par, sum_N_par, cov_data, u, start, lower, upper, trace = 0L )
B |
Integer specifying the number of blocks in the matrix |
N_dim |
Vector of integers, which each value specifying the dimension of each block |
N_func |
Vector of integers specifying the number of functions in the covariance function for each block. |
func_def |
Matrix of integers where each column specifies the function definition for each function in each block. |
N_var_func |
Matrix of integers of same size as 'func_def' with each column specying the number of variables in the argument to each function in each block |
col_id |
3D array (cube) of integers of dimension length(func_def) x max(N_var_func) x B where each slice the respective column indexes of 'cov_data' for each function in the block |
N_par |
Matrix of integers of same size as 'func_def' with each column specifying the number of parameters in the function in each block |
cov_data |
3D array (cube) holding the data for the covariance matrix where each of the B slices is the data required for each block |
u |
Matrix of samples of the random effects. Each column is a sample. |
start |
Vector of starting values for the optmisation |
lower |
Vector of lower bounds for the covariance parameters |
upper |
Vector of upper bounds for the covariance parameters |
trace |
Integer indicating what to report to the console, 0= nothing, 1-3=detailed output |
A vector of covariance parameters that maximise the log likelihood
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.