#' Lin and Stivers’s MLE-based test under heteroscedasticity
#'
#' \code{lin.mle.test} uses the Lin and Stivers’s MLE-based test
#' under heteroscedasticity to obtain a p-value for a partially matched
#' pairs test.
#'
#' Lin and Stivers’s test makes use of a modified maximum likelihood estimator
#' and assumption of heteroscedasticity. Under the null hypothesis, the
#' resulting test statistic Z_LS, follows an approximate t distribution with n1
#' degrees of freedom. Mathematical details are provided in [Kuan & Huang,
#' 2013].
#'
#' If proper sample size conditions are not met, then \code{lin.mle.test} may
#' exit or perform a paired or unpaired two-sample t.test, depending on the
#' nature of the sample size issue.
#'
#' If the variance of input data is close to zero, \code{lin.mle.test} will
#' return an error message.
#'
#' @param x a non-empty numeric vector containing some NA values
#' @param y a non-empty numeric vector containing some NA values
#' @param alternative specification of the alternative hypothesis.
#' Takes values: \code{"two.sided"}, \code{"greater"}, or \code{"less"}.
#'
#' @return p-value associated with the hypothesis test
#'
#' @examples
#' In the following, the true means are not equal:
#'
#' x = rnorm(400, 0, 1)
#' x[sample(1:400, size=75, replace=FALSE)] = NA
#' y = rnorm(400, 0.4, 3)
#' y[sample(1:400, size=75, replace=FALSE)] = NA
#' lin.mle.test(x, y, alternative = 'two.sided')
#'
#' @references
#' Kuan, Pei Fen, and Bo Huang. "A simple and robust method for partially
#' matched samples using the p‐values pooling approach." Statistics in
#' medicine 32.19 (2013): 3247-3259.
#'
#' @export
lin.mle.test = function(x, y,
alternative = c('two.sided', 'greater', 'less')) {
# check whether length(x)==length(y)
if (length(x)!=length(y)) {
if (sum(!is.na(x))<3 | sum(!is.na(y))<3) {
stop('Sample sizes are too small and length of x ',
'should equal length of y.')
} else {
warning('Length of x should equal length of y. ',
'Two sample t-test attempted')
return (t.test(x[!is.na(x)], y[!is.na(y)])$p.value)
}
}
pair.inds = !is.na(x) & !is.na(y)
only.x = !is.na(x) & is.na(y)
only.y = !is.na(y) & is.na(x)
pair.x = x[pair.inds]
pair.y = y[pair.inds]
# test whether appropriate sample size conditons are met
n1 = sum(pair.inds)
n2 = sum(only.x)
n3 = sum(only.y)
if (n1<4 & n2+n3<5) {
stop('Sample sizes are too small')
} else if (n1>=4 & n2+n3<5) {
warning('Not enough missing data for modified t-test. ',
'Matched pairs t-test attempted')
return (t.test(pair.x, pair.y,
alternative = alternative, paired = TRUE)$p.value)
} else if (n1<4 & n2+n3>=5) {
warning('Not enough matched pairs for modified t-test. ',
'Two sample t-test attempted')
return (t.test(x[only.x], y[only.y],
alternative = alternative)$p.value)
}
# else, n1>=4 and n2+n3>=5 is met, Lin MLE test is executed
T1.bar = mean(pair.x)
N1.bar = mean(pair.y)
ST1 = sd(pair.x)
SN1 = sd(pair.y)
# check whether variance of data is approx. zero
if (ST1 < 10*.Machine$double.eps * abs(T1.bar) |
SN1 < 10*.Machine$double.eps * abs(N1.bar)){
stop('Variance of data is too close to zero')
}
T.bar = mean(x[!is.na(x)])
N.bar = mean(y[!is.na(y)])
STN1 = cov(pair.x, pair.y)
r = STN1 / (ST1 * SN1)
f = n1*(n1+n3+n2*STN1/ST1^2) / ((n1+n2)*(n1+n3)-n2*n3*r^2)
g = n1*(n1+n2+n3*STN1/SN1^2) / ((n1+n2)*(n1+n3)-n2*n3*r^2)
V1 = ((f^2/n1 + (1-f)^2/n2)*(n1-1)*ST1^2 +
(g^2/n1 + (1-g)^2/n3)*(n1-1)*SN1^2 -
2*f*g*STN1*(n1-1)/n1) / (n1-1)
Z.ls = (f*(T1.bar-T.bar) - g*(N1.bar-N.bar) + T.bar - N.bar) / sqrt(V1)
if (all(alternative == 'greater')) {
p.value = pt(Z.ls, n1, lower.tail = FALSE)
} else if (all(alternative == 'less')) {
p.value = pt(Z.ls, n1, lower.tail = TRUE)
} else if (all(alternative == 'two.sided')) {
p.value = 2*pt(abs(Z.ls), n1, lower.tail = FALSE)
}
return (p.value)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.