pick_all_phi0_A | R Documentation |
\phi_{m,0}
or \mu_{m}
and A_{m,1},...,A_{m,p}
parameter valuespick_all_phi0_A
picks the intercept or mean parameters and vectorized coefficient
matrices from the given parameter vector.
pick_all_phi0_A(p, M, d, params, structural_pars = NULL)
p |
a positive integer specifying the autoregressive order of the model. |
M |
|
d |
the number of time series in the system. |
params |
a real valued vector specifying the parameter values.
Above, In the GMVAR model, The notation is similar to the cited literature. |
structural_pars |
If
See Virolainen (forthcoming) for the conditions required to identify the shocks and for the B-matrix as well (it is |
Does not support constrained parameter vectors.
Returns a ((pd^2+d)xM)
matrix containing (\phi_{m,0}, vec(A_{m,1}),...,vec(A_{m,p}))
in the m:th column,
or (\mu_{m}, vec(A_{m,1}),...,vec(A_{m,p}))
if the parameter vector is mean-parametrized, m=1,..,M.
No argument checks!
Kalliovirta L., Meitz M. and Saikkonen P. 2016. Gaussian mixture vector autoregression. Journal of Econometrics, 192, 485-498.
Virolainen S. (forthcoming). A statistically identified structural vector autoregression with endogenously switching volatility regime. Journal of Business & Economic Statistics.
Virolainen S. 2022. Gaussian and Student's t mixture vector autoregressive model with application to the asymmetric effects of monetary policy shocks in the Euro area. Unpublished working paper, available as arXiv:2109.13648.
@keywords internal
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.