View source: R/quantileResiduals.R
quantile_residuals | R Documentation |
quantile_residuals
calculates multivariate quantile residuals
(proposed by Kalliovirta and Saikkonen 2010) for a GMVAR, StMVAR, or G-StMVAR model.
quantile_residuals(gsmvar)
gsmvar |
an object of class |
Returns ((n_obs-p) x d)
matrix containing the multivariate quantile residuals,
j
:th column corresponds to the time series in the j
:th column of the data. The multivariate
quantile residuals are calculated so that the first column quantile residuals are the "unconditioned ones"
and the rest condition on all the previous ones in numerical order. Read the cited article by
Kalliovirta and Saikkonen 2010 for details.
Kalliovirta L., Meitz M. and Saikkonen P. 2016. Gaussian mixture vector autoregression. Journal of Econometrics, 192, 485-498.
Kalliovirta L. and Saikkonen P. 2010. Reliable Residuals for Multivariate Nonlinear Time Series Models. Unpublished Revision of HECER Discussion Paper No. 247.
Virolainen S. 2022. Gaussian and Student's t mixture vector autoregressive model with application to the asymmetric effects of monetary policy shocks in the Euro area. Unpublished working paper, available as arXiv:2109.13648.
Virolainen S. 2025. A statistically identified structural vector autoregression with endogenously switching volatility regime. Journal of Business & Economic Statistics, 43, 1, 44-54.
fitGSMVAR
, GSMVAR
, quantile_residual_tests
,
diagnostic_plot
, predict.gsmvar
, profile_logliks
# GMVAR(1,2), d=2 model:
params12 <- c(0.55, 0.112, 0.344, 0.055, -0.009, 0.718, 0.319, 0.005, 0.03,
0.619, 0.173, 0.255, 0.017, -0.136, 0.858, 1.185, -0.012, 0.136, 0.674)
mod12 <- GSMVAR(gdpdef, p=1, M=2, params=params12)
quantile_residuals(mod12)
# GMVAR(2,2), d=2 model with mean-parametrization:
params22 <- c(0.869, 0.549, 0.223, 0.059, -0.151, 0.395, 0.406, -0.005,
0.083, 0.299, 0.215, 0.002, 0.03, 0.576, 1.168, 0.218, 0.02, -0.119,
0.722, 0.093, 0.032, 0.044, 0.191, 1.101, -0.004, 0.105, 0.58)
mod22 <- GSMVAR(gdpdef, p=2, M=2, params=params22, parametrization="mean")
quantile_residuals(mod22)
# Structural GMVAR(2, 2), d=2 model identified with sign-constraints:
params22s <- c(0.36, 0.121, 0.484, 0.072, 0.223, 0.059, -0.151, 0.395,
0.406, -0.005, 0.083, 0.299, 0.218, 0.02, -0.119, 0.722, 0.093, 0.032,
0.044, 0.191, 0.057, 0.172, -0.46, 0.016, 3.518, 5.154, 0.58)
W_22 <- matrix(c(1, 1, -1, 1), nrow=2, byrow=FALSE)
mod22s <- GSMVAR(gdpdef, p=2, M=2, params=params22s, structural_pars=list(W=W_22))
quantile_residuals(mod22s)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.