R/summarydata.b.R

#' @title Summary of Continuous Variables
#' @return Text
#'
#' @importFrom R6 R6Class
#' @import jmvcore
#'

summarydataClass <- if (requireNamespace("jmvcore")) R6::R6Class("summarydataClass",
    inherit = summarydataBase, private = list(.run = function() {



        # # Error Message ----
        #
        # if (nrow(self$data) == 0) stop("Data contains no (complete) rows")
        #
        # if ( (is.null(self$options$vars) || is.null(self$options$facs)) && is.null(self$options$target) ) {
        #     # ToDo Message ----
        #     todo <- "
        #         <br>Welcome to ClinicoPath
        #                   <br><br>
        #                   This tool will help you form an Alluvial Plots.
        #                   "
        #     html <- self$results$todo
        #     html$setContent(todo)
        #
        # } else {
        #     todo <- ""
        #     html <- self$results$todo
        #     html$setContent(todo)
        #
        #
        #
        # }






        if (length(self$options$vars) == 0) {
            todo <- "
                <br>Welcome to ClinicoPath
                          <br><br>
                          This tool will help you to write descriptive statistics for numeric variables.
                          <br><br>
                          Please cite the packages and jamovi using references below.
                          "

            html <- self$results$todo
            html$setContent(todo)
            return()

        } else {
            todo <- ""
            html <- self$results$todo
            html$setContent(todo)

            if (nrow(self$data) == 0) stop("Data contains no (complete) rows")


            mydata <- self$data

            myvars <- jmvcore::constructFormula(terms = self$options$vars)

            myvars <- jmvcore::decomposeFormula(formula = myvars)

            myvars <- unlist(myvars)

            # ?ave

            # grvar <- jmvcore::constructFormula(terms = self$options$grvar)
            #
            # grvar <- jmvcore::decomposeFormula(formula = grvar)
            #
            # grvar <- unlist(grvar)
            #
            # results <- stats::ave(x = jmvcore::toNumeric(mydata[[myvars]]),
            #                       mydata[[grvar]],
            #                       FUN = function(x) mean(x, na.rm = TRUE)
            #                       )

            # mysummary function
            mysummary <- function(myvar) {

                mean_x <- round(mean(jmvcore::toNumeric(mydata[[myvar]]),
                  na.rm = TRUE), digits = 1)

                sd_x <- round(sd(x = jmvcore::toNumeric(mydata[[myvar]]),
                  na.rm = TRUE), digits = 1)

                median_x <- round(median(jmvcore::toNumeric(mydata[[myvar]]),
                  na.rm = TRUE), digits = 1)

                min_x <- round(min(jmvcore::toNumeric(mydata[[myvar]]), na.rm = TRUE),
                  digits = 1)

                max_x <- round(max(jmvcore::toNumeric(mydata[[myvar]]), na.rm = TRUE),
                  digits = 1)

                print(paste0("Mean of ", myvar, " is: ", mean_x, " \U00B1 ", sd_x,
                  ". (Median: ", median_x, " [Min: ", min_x, " - ", "Max: ",
                  max_x, "])", collapse = " "))
            }

            results <- purrr::map(.x = myvars, .f = mysummary)

            results <- unlist(results)

            self$results$text$setContent(results)


        }


    }))
sbalci/ClinicoPathLinuxDescriptives documentation built on July 21, 2023, 11:54 a.m.