LossBinomial | R Documentation |
This loss can be used for binary classification. The coding we have chosen
here acts on
y \in \{-1, 1\}
.
offset |
( |
S4 object.
Loss Function:
L(y, f(x)) = \log(1 + \mathrm{exp}(-2yf(x)))
Gradient:
\frac{\delta}{\delta f(x)}\ L(y, f(x)) = - \frac{y}{1 + \mathrm{exp}(2yf)}
Initialization:
\hat{f}^{[0]}(x) = \frac{1}{2}\mathrm{log}(p / (1 - p))
with
p = \frac{1}{n}\sum\limits_{i=1}^n\mathrm{1}_{\{y^{(i)} = 1\}}
LossBinomial$new() LossBinomial$new(offset)
$loss()
: matrix(), matrix() -> matrix()
$gradient()
: matrix(), matrix() -> matrix()
$constInit()
: matrix() -> matrix()
$calculatePseudoResiduals()
: matrix(), matrix() -> matrix()
$getLossType()
: () -> character(1)
# Create new loss object:
bin_loss = LossBinomial$new()
bin_loss
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.