LossQuantile | R Documentation |
This loss can be used for regression with y \in \mathrm{R}
.
offset |
( |
quantile |
( |
S4 object.
Loss Function:
L(y, f(x)) = h| y - f(x)|
Gradient:
\frac{\delta}{\delta f(x)}\ L(y, f(x)) = -h\mathrm{sign}( y - f(x))
Initialization:
\hat{f}^{[0]}(x) = \mathrm{arg~min}_{c\in R}\ \frac{1}{n}\sum\limits_{i=1}^n
L(y^{(i)}, c) = \mathrm{quantile}(y, q)
LossAbsolute$new() LossAbsolute$new(quantile) LossAbsolute$new(offset, quantile)
$loss()
: matrix(), matrix() -> matrix()
$gradient()
: matrix(), matrix() -> matrix()
$constInit()
: matrix() -> matrix()
$calculatePseudoResiduals()
: matrix(), matrix() -> matrix()
$getLossType()
: () -> character(1)
# Create new loss object:
quadratic_loss = LossQuadratic$new()
quadratic_loss
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.