#' Separated Product PBLA
#'
#' Based on product independence, compute pair-based likelihood approximation. Supports exponential infectious periods.
#'
#' @param r numeric vector of increasing removal times
#' @param beta matrix of rates
#' @param gamma numeric vector of rates
#' @param A integer patient zeros
#' @param lag numeric fixed lag
#'
#' @return negative log likelihood
#'
#' @export
pbla_sep = function(r, beta, gamma, A = 1, lag = 0){
# copy and paste from is.integer documentation
is.wholenumber = function(x, tol = .Machine$double.eps^0.5){
abs(x - round(x)) < tol
}
if((any(beta < 0)) | (any(gamma < 0)) |
(!is.wholenumber(A)) | (A <= 0)){
# invalid parameters
return(1e15)
} else{
# initialize
n = length(r)
N = ncol(beta)
r1 = r[1]
# change of variable to delta
if((n < (N - 1)) & (n > 1)){
B = apply(beta[1:n,(n+1):N], 1, sum)
delta = gamma + B
} else{ # handles special cases
if(n == N){delta = gamma}
if(n == (N - 1)){delta = gamma + beta[1:(N-1),N]}
if(n == 1){delta = gamma + sum(beta[1,2:N])}
}
# calculate log likelihood (line 6)
ia = rep(-log(A), A)
ip = - delta[1:A] * (r[1:A] - r1)
z = ia + ip
# evaluate psi and chi terms
psichi = rep(0, n)
for(j in (1:n)){
X = 0
Y = 0
rj= r[j]
deltaj = delta[j]
for(k in (1:n)[-j]){
# lemma 1
b = beta[k,j]
rk = r[k]
deltak = delta[k]
denom1 = (deltaj + deltak)
denom2 = (b + deltak)
if(rj - lag < rk){
w = exp(- deltak * (rk - rj + lag))
x = b * deltaj / denom1 * w
y = 1 - b * deltaj / denom1 / denom2 * w
} else{
w = exp(- deltaj * (rj - lag - rk))
x = b * deltaj / denom1 * w
y = deltak * (1 + b / denom1 * w) / denom2
}
# line twelve
X = X + x
Y = Y + log(y)
}
psichi[j] = log(X * exp(Y))
}
# line eight
for(alpha in 1:A){z[alpha] = z[alpha] + sum(psichi[-alpha])}
z = matrixStats::logSumExp(z)
a = sum(log(gamma / delta))
# negative log likelihood
return(-(a+z))
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.