#' Standard PBLA
#'
#' Compute pair-based likelihood approximation. Supports Erlang infectious periods.
#'
#' @param r numeric vector of increasing removal times
#' @param beta matrix of rates
#' @param gamma numeric vector of rates
#' @param m positive integer shape
#' @param A integer patient zeros
#' @param lag numeric fixed lag
#'
#' @return negative log likelihood
#'
#' @export
pbla_std = function(r, beta, gamma, m = 1, A = 1, lag = 0){
# initialize
n = length(r)
N = ncol(beta)
r1 = r[1]
# change of variable to delta
if((n < (N - 1)) & (n > 1)){
B = apply(beta[1:n,(n+1):N], 1, sum)
delta = gamma + B
} else{ # handles special cases
if(n == N){delta = gamma}
if(n == (N - 1)){delta = gamma + beta[1:(N-1),N]}
if(n == 1){delta = gamma + sum(beta[1,2:N])}
}
# calculate log likelihood (line six)
ia = rep(-log(A), A)
ip = - delta[1:A] * (r[1:A] - r1)
z = ia + ip
# copy and paste from is.integer documentation
is.wholenumber = function(x, tol = .Machine$double.eps^0.5){
abs(x - round(x)) < tol
}
if((any(beta < 0)) | (any(gamma < 0)) |
(!is.wholenumber(m)) | (m <= 0) |
(!is.wholenumber(A)) | (A <= 0)){
# invalid parameters
return(1e15)
} else{
if(m == 1){ # exponential infectious periods
# evaluate psi and chi terms
psichi = rep(0, n)
for(j in (1:n)){
X = 0
Y = 0
rj= r[j]
deltaj = delta[j]
for(k in (1:n)[-j]){
b = beta[k,j]
rk = r[k]
deltak = delta[k]
denom = (deltaj + deltak) * (b + deltak)
# lemma 1
if(rj - lag < rk){
w = deltaj / denom * exp(- deltak * (rk - (rj - lag)))
x = deltak * w
y = 1 - b * w
} else{
w = deltak / denom * exp(- deltaj * ((rj - lag) - rk))
x = deltaj * w
y = deltak / (b + deltak) + b * w
}
# line twelve
X = X + b * x / y
Y = Y + log(y)
}
psichi[j] = Y + log(X)
}
# line eight
for(alpha in 1:A){z[alpha] = z[alpha] + sum(psichi[-alpha])}
z = matrixStats::logSumExp(z)
a = sum(log(gamma / delta))
# negative log likelihoods
return(-(a+z))
} else{ # erlang case
# evaluate psi and chi terms
psichi = rep(0, n)
for(j in (1:n)){
X = 0
Y = 0
rj= r[j]
deltaj = delta[j]
for(k in (1:n)[-j]){
b = beta[k,j]
rk = r[k]
deltak = delta[k]
# lemma 4
if(rj - lag < rk){
U = 0
V = 0
for(l in 0:(m-1)){
v = 0
for(p in 0:l){
v = v + choose(m + p - 1, p) /
factorial(l - p) *
((rk - rj + lag) ^ (l - p)) /
((deltaj + deltak) ^ (m + p))
}
U = U + v / ((deltak + b) ^ (m - l))
V = V + v * (deltak ^ l) *
(((deltak / (deltak + b)) ^ (m - l)) - 1)
}
w = exp(- deltak * (rk - rj + lag)) * (deltaj ^ m)
x = (deltak ^ m) * w * U
y = 1 + w * V
} else{
U = 0
V = 0
for(l in 0:(m-1)){
v = 0
for(p in 0:(m-1)){
v = v + choose(l + p, p) /
factorial(m - p - 1) *
((rj - lag - rk) ^ (m - p - 1)) /
((deltaj + deltak) ^ (l + p + 1))
}
U = U + v / ((deltak + b) ^ (m - l))
V = V + v * (deltak ^ l) *
(((deltak / (deltak + b)) ^ (m - l)) - 1)
}
w = exp(- deltaj * (rj - lag - rk)) * (deltaj ^ m)
x = (deltak ^ m) * w * U
y = 1 + (w * V) -
pgamma(rj - lag - rk, m, deltaj) *
(1 - ((deltak / (deltak + b)) ^ m))
}
# line twelve
X = X + b * x / y
Y = Y + log(y)
}
psichi[j] = Y + log(X)
}
# line eight
for(alpha in 1:A){z[alpha] = z[alpha] + sum(psichi[-alpha])}
z = matrixStats::logSumExp(z)
a = sum(m * log(gamma / delta))
# negative log likelihoods
return(-(a+z))
}
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.