#' Function to assess multicollinearity in ERGM using variance inflation factors
#' Measure based on Duxbury (2018) available in Sociological Methods and Research
#'
#' @param my.ergm is an ergm object
#'
vif.ergm<-function(my.ergm){
if(class(my.ergm)%in%"btergm"){
data_mat<-my.ergm@effects
corr5<-stats::cor(data_mat[!rownames(data_mat)%in%"edges",
!colnames(data_mat)%in%"edges"]) ##omit edges term
beta<-btergm::coef(my.ergm)
}else{
#get correlation matrix
if(class(my.ergm)%in%"mlergm"){
cor.mat<-stats::cov2cor(solve(my.ergm$information_matrix))
beta<-my.ergm$theta
}else{
cor.mat<-stats::cov2cor(my.ergm$covar) #calculate correlation matrix
beta<-stats::coef(my.ergm)
}
#omit edges, assign names to matrix
rownames(cor.mat)<-colnames(cor.mat)<-names(beta)
corr5<-cor.mat[!rownames(cor.mat)%in%"edges",
!colnames(cor.mat)%in%"edges"]
}
corr5<-corr5[!is.na(corr5[1:nrow(corr5)]),]
corr5<-corr5[,which(!is.na(corr5[1,1:ncol(corr5)]))]
VIFS<-matrix(0,nrow=1,ncol=ncol(corr5))
for(i in 1:ncol(corr5)){
gvec<-as.vector(corr5[-c(i),i]) ##create vector of correlations between covariate of interest and other covariates in the model
tgvec<-t(gvec)
xcor<-solve(corr5[-c(i),-c(i)]) ##create square matrix of correlations between covariates in the model other than the one of interest
Rsq<-tgvec%*%xcor%*%gvec
VIFS[1,i]<-1/(1-Rsq)
}
colnames(VIFS)<-names(beta[!names(beta)%in%"edges"])
if(class(my.ergm)%in%"btergm"){
warning("VIFS for bootstrap TERGM based on model matrix, not the covariance matrix of the estimator. Benchmarks used for MCMC ML estimation may not apply.")
}else{
message("Higher values indicate greater correlation.\nVIF > 20 is concerning, VIF > 100 indicates severe collinearity.")
}
VIFS
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.