BGE: Bivariate Gamma Distribution Estimation

Description Usage Arguments Value Examples

View source: R/BGE.R

Description

This function allows you to estimate bivariate gamma distribution given a data set using EM algorithm

Usage

1
BGE(data, maxit = 300, tol = 1e-05, start = NULL, verbose = FALSE)

Arguments

data

A numeric vector, matrix or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.

maxit

An integer limits on the number of EM iterations. The default is 300.

tol

A value giving relative convergence tolerance for the log-likelihood. The default is 1e-6.

start

Starting value of the EM algorithm

verbose

logical; controls whether summary result of each EM iteration is displayed during the fitting procedure. Default is TRUE.

Value

An object of class BGR providing the estimation results. The details of the output components are:

estimate

The estimated parametr values.

loglike

The final estimated maximum log-likelihood value.

ll

The sequence of log-likelihood values in the EM algorithm fitting process.

df

The number of estimated parameters.

AIC

AIC values.

BIC

BIC values.

iter

Total iteration numbers.

n

The number of observations in the data.

call

The matched call.

Examples

1
2
3
dat <- rbivgamma(1000, alpha = c(1,2,0.5), beta=0.1)
mod <- BGE(data = dat, verbose = FALSE)
mod

senhu/mvClaim documentation built on Jan. 29, 2022, 3:18 p.m.