Description Usage Arguments Value Examples
Bivariate copula regression models where the marginal distributions are of Gamma GLMs.
1 2 | copreg.gamma(f1, f2, copula, data, optim.method = "BFGS",
optim.control = list(fnscale = -1, trace = 1))
|
f1 |
A regression formula for the first marginal GLM. |
f2 |
A regression formula for the second marginal GLM. |
copula |
A copula specified from the |
data |
A matrix or data frame of observations. Categorical variables are allowed as covariates. |
optim.method |
Method for the |
optim.control |
Parameters that controls the |
An object of class copreg
providing the estimation results.
The details of the output components are:
call |
The matched call. |
coefficients |
The estimated coefficients. |
copula.param |
The estimated copula parameters. |
copula |
The specified copula. |
fitted.values |
The fitted values of the regression. |
residuals |
The residuals from fitted values. |
loglike |
The final estimated maximum log-likelihood value. |
df |
Number of estimated parameters. |
AIC |
AIC values. |
BIC |
BIC values. |
formula |
The formulas used in the regression. |
y |
The input response data. |
n |
The number of observations in the data. |
Model.Matrix |
The used model matrix for each regression formula. |
1 2 3 4 5 | data("simdat.mcgr")
res <- copreg.gamma(f1 = y1 ~ x1+x2,
f2 = y2 ~ x1+x2,
copula = copula::gumbelCopula(dim=2),
data = simdat.mcgr)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.