copreg.gamma: Bivariate Copula Regression with Gamma Marginal Distributions

Description Usage Arguments Value Examples

View source: R/copreg.gamma.R

Description

Bivariate copula regression models where the marginal distributions are of Gamma GLMs.

Usage

1
2
copreg.gamma(f1, f2, copula, data, optim.method = "BFGS",
  optim.control = list(fnscale = -1, trace = 1))

Arguments

f1

A regression formula for the first marginal GLM.

f2

A regression formula for the second marginal GLM.

copula

A copula specified from the copula package.

data

A matrix or data frame of observations. Categorical variables are allowed as covariates.

optim.method

Method for the optim function.

optim.control

Parameters that controls the optim function used for maximum likelihood.

Value

An object of class copreg providing the estimation results. The details of the output components are:

call

The matched call.

coefficients

The estimated coefficients.

copula.param

The estimated copula parameters.

copula

The specified copula.

fitted.values

The fitted values of the regression.

residuals

The residuals from fitted values.

loglike

The final estimated maximum log-likelihood value.

df

Number of estimated parameters.

AIC

AIC values.

BIC

BIC values.

formula

The formulas used in the regression.

y

The input response data.

n

The number of observations in the data.

Model.Matrix

The used model matrix for each regression formula.

Examples

1
2
3
4
5
data("simdat.mcgr")
res <- copreg.gamma(f1 = y1 ~ x1+x2,
                    f2 = y2 ~ x1+x2,
                    copula = copula::gumbelCopula(dim=2),
                    data = simdat.mcgr)

senhu/mvClaim documentation built on Jan. 29, 2022, 3:18 p.m.