#' Simulated artificial data based on bivariate gamma regression (no mixtures).
#'
#' An artificial data set of size 1000 containing the bivariate response \code{y1}, \code{y2}, three covariates \code{w1}, \code{w2}, \code{w3}.
#'
#' @format A data frame with 1000 rows and 5 variables:
#' \describe{
#' \item{\code{y1},\code{y2}}{The bivariate response variable.}
#' \item{\code{w1},\code{w2},\code{w3}}{Three covariates.}
#' }
#' @details This data set of size 1000 is artificially generated as following: first \code{w1}, \code{w2}, and \code{w3} are simulated from \code{Normal(0, 1)}.
#' Then the \eqn{\alpha1, \alpha2, \alpha3, \beta} are generated via
#' \deqn{ \alpha1 = exp(1 + 0.1 w1 + 0.3 w2) }
#' \deqn{ \alpha2 = exp(0.1 + 0.1 w2 + 0.1 w3) }
#' \deqn{ \alpha3 = exp(0.5 + 0.1 w1 + 0.2 w2 + 0.4 w3) }
#' \deqn{ \beta = exp(0.2 + 0.1 w1 + 0.1 w2 + 0.2 w3) }
#' For each set of parameters \eqn{(\alpha1, \alpha2, \alpha3, \beta)} a random sample from this bivariate gamma distribution is simulated, i.e. \eqn{y ~ BG(\alpha1, \alpha2, \alpha3, \beta)}.
#'
#' @source Hu, S., Murphy, T. B. and O'Hagan, A. (2019) Bivariate Gamma Mixture of Experts Models for Joint Claims Modeling. To appear.
"bgr.sim"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.