generate_artificial_BN: Adaptation of pcalg method to generate artificial Gaussian...

Description Usage Arguments Value Examples

Description

Adaptation of pcalg method to generate artificial Gaussian BNs

Usage

1
2
generate_artificial_BN(is_dir, prob = 0.3, lB = -10, uB = 10,
  node_names = as.character(1:n), num_clusters = 3)

Arguments

is_dir

is a binary array 1xn where n is the number of variables, it takes value 1 when the variable is directional and 0 if the variable is linear

prob

probability to add an edge between two variables

lB

lower bound for the coefficients

uB

upper bound for the coefficients

node_names

an array with the names of the nodes

num_clusters

is an integer denoting the number of clusters

Value

model is a list generated by the functions generate_artificial_BN or clusteringSomas

Examples

1
2
is_dir <- c(rep(1,3),rep(0,7))
model  <- generate_artificial_BN(is_dir)

sergioluengosanchez/EMS_clustering documentation built on May 31, 2019, 10:37 a.m.