Datasets | R Documentation |
Simple data-sets included in the package
data(raw.dataset)
data(ERCCraw)
data(test.dataset)
data(test.dataset.clusters1)
data(test.dataset.clusters2)
data(vignette.split.clusters)
data(vignette.merge.clusters)
data(vignette.merge2.clusters)
raw.dataset
is a data frame with 2000
genes and 815
cells
ERCCRaw
is a data.frame
test.dataset
is a data.frame
with 600
genes and 1200
cells
test.dataset.clusters1
is a character array
test.dataset.clusters2
is a character array
vignette.split.clusters
is a factor
vignette.merge.clusters
is a factor
vignette.merge2.clusters
is a factor
raw.dataset
is a sub-sample of a real scRNA-seq data-set
ERCCRaw
dataset
test.dataset
is an artificial data set obtained by sampling target
negative binomial distributions on a set of 600
genes on 2
two
cells clusters of 600
cells each. Each clusters has its own set
of parameters for the distributions even, but a fraction of the genes has
the same expression in both clusters.
test.dataset.clusters1
is the clusterization obtained running
cellsUniformClustering()
on the test.dataset
test.dataset.clusters2
is the clusterization obtained running
mergeUniformCellsClusters()
on the test.dataset
using the previous
clusterization
vignette.split.clusters
is the clusterization obtained running
cellsUniformClustering()
on the vignette dataset (mouse cortex E17.5,
GEO: GSM2861514)
vignette.merge.clusters
is the clusterization obtained running
mergeUniformCellsClusters()
on the vignette dataset (mouse cortex E17.5,
GEO: GSM2861514) using the previous clusterization
vignette.merge2.clusters
is the clusterization obtained re-running
mergeUniformCellsClusters()
on the vignette dataset (mouse cortex E17.5,
GEO: GSM2861514) using the vignette.split.clusters
clusterization, but
with a sequence of progressively relaxed checks
GEO GSM2861514
ERCC
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.