HeatmapPlots: Heatmap Plots

HeatmapPlotsR Documentation

Heatmap Plots

Description

These functions create heatmap COEX plots.

Usage

singleHeatmapDF(objCOTAN, genesLists, sets, pValueThreshold = 0.01)

heatmapPlot(
  objCOTAN = NULL,
  genesLists,
  sets = NULL,
  pValueThreshold = 0.01,
  conditions = NULL,
  dir = "."
)

genesHeatmapPlot(
  objCOTAN,
  primaryMarkers,
  secondaryMarkers = vector(mode = "character"),
  pValueThreshold = 0.01,
  symmetric = TRUE
)

cellsHeatmapPlot(objCOTAN, cells = NULL, clusters = NULL)

plotTheme(plotKind = "common", textSize = 14L)

Arguments

objCOTAN

a COTAN object

genesLists

A list of genes' arrays. The first array defines the genes in the columns

sets

A numeric array indicating which fields in the previous list should be used. Defaults to all fields

pValueThreshold

The p-value threshold. Default is 0.01

conditions

An array of prefixes indicating the different files

dir

The directory in which are all COTAN files (corresponding to the previous prefixes)

primaryMarkers

A set of genes plotted as rows

secondaryMarkers

A set of genes plotted as columns

symmetric

A Boolean: default TRUE. When TRUE the union of primaryMarkers and secondaryMarkers is used for both rows and column genes

cells

Which cells to plot (all if no argument is given)

clusters

Use this clusterization to select/reorder the cells to plot

plotKind

a string indicating the plot kind

textSize

axes and strip text size (default=14)

Details

singleHeatmapDF() creates the heatmap data.frame of one COTAN object

heatmapPlot() creates the heatmap of one or more COTAN objects

genesHeatmapPlot() is used to plot an heatmap made using only some genes, as markers, and collecting all other genes correlated with these markers with a p-value smaller than the set threshold. Than all relations are plotted. Primary markers will be plotted as groups of rows. Markers list will be plotted as columns.

cellsHeatmapPlot() creates the heatmap plot of the cells' COEX matrix

plotTheme() returns the appropriate theme for the selected plot kind. Supported kinds are: "common", "pca", "genes", "UDE", "heatmap", "GDI", "UMAP", "size-plot"

Value

singleHeatmapDF() returns a data.frame

heatmapPlot() returns a ggplot2 object

genesHeatmapPlot() returns a ggplot2 object

cellsHeatmapPlot() returns the cells' COEX heatmap plot

plotTheme() returns a ggplot2::theme object

See Also

ggplot2::theme() and ggplot2::ggplot()

Examples

data("test.dataset")
objCOTAN <- COTAN(raw = test.dataset)
objCOTAN <- clean(objCOTAN)
objCOTAN <- estimateDispersionNuBisection(objCOTAN, cores = 6L)
objCOTAN <- calculateCoex(objCOTAN, actOnCells = FALSE)
objCOTAN <- calculateCoex(objCOTAN, actOnCells = TRUE)

## some genes
primaryMarkers <- c("g-000010", "g-000020", "g-000030")

## an example of named list of different gene set
groupMarkers <- list(G1 = primaryMarkers,
                     G2 = c("g-000300", "g-000330"),
                     G3 = c("g-000510", "g-000530", "g-000550",
                            "g-000570", "g-000590"))

hPlot <- heatmapPlot(objCOTAN, pValueThreshold = 0.05,
                     genesLists = groupMarkers, sets = 2L:3L)
plot(hPlot)

ghPlot <- genesHeatmapPlot(objCOTAN, primaryMarkers = primaryMarkers,
                           secondaryMarkers = groupMarkers,
                           pValueThreshold = 0.05, symmetric = FALSE)
plot(ghPlot)

clusters <- c(rep_len("1", getNumCells(objCOTAN)/2),
              rep_len("2", getNumCells(objCOTAN)/2))
names(clusters) <- getCells(objCOTAN)

chPlot <- cellsHeatmapPlot(objCOTAN, clusters = clusters)
## plot(chPlot)

theme <- plotTheme("pca")


seriph78/COTAN documentation built on Dec. 10, 2024, 3:30 a.m.