HeatmapPlots | R Documentation |
These functions create heatmap COEX
plots.
singleHeatmapDF(objCOTAN, genesLists, sets, pValueThreshold = 0.01)
heatmapPlot(
objCOTAN = NULL,
genesLists,
sets = NULL,
pValueThreshold = 0.01,
conditions = NULL,
dir = "."
)
genesHeatmapPlot(
objCOTAN,
primaryMarkers,
secondaryMarkers = vector(mode = "character"),
pValueThreshold = 0.01,
symmetric = TRUE
)
cellsHeatmapPlot(objCOTAN, cells = NULL, clusters = NULL)
plotTheme(plotKind = "common", textSize = 14L)
objCOTAN |
a |
genesLists |
A |
sets |
A numeric array indicating which fields in the previous |
pValueThreshold |
The p-value threshold. Default is 0.01 |
conditions |
An |
dir |
The directory in which are all |
primaryMarkers |
A set of genes plotted as rows |
secondaryMarkers |
A set of genes plotted as columns |
symmetric |
A Boolean: default |
cells |
Which cells to plot (all if no argument is given) |
clusters |
Use this clusterization to select/reorder the cells to plot |
plotKind |
a string indicating the plot kind |
textSize |
axes and strip text size (default=14) |
singleHeatmapDF()
creates the heatmap
data.frame
of one
COTAN
object
heatmapPlot()
creates the heatmap
of one or more COTAN
objects
genesHeatmapPlot()
is used to plot an heatmap made using only
some genes, as markers, and collecting all other genes correlated with
these markers with a p-value smaller than the set threshold. Than all
relations are plotted. Primary markers will be plotted as groups of rows.
Markers list will be plotted as columns.
cellsHeatmapPlot()
creates the heatmap plot of the cells' COEX
matrix
plotTheme()
returns the appropriate theme for the selected plot
kind. Supported kinds are: "common"
, "pca"
, "genes"
, "UDE"
,
"heatmap"
, "GDI"
, "UMAP"
, "size-plot"
singleHeatmapDF()
returns a data.frame
heatmapPlot()
returns a ggplot2
object
genesHeatmapPlot()
returns a ggplot2
object
cellsHeatmapPlot()
returns the cells' COEX
heatmap plot
plotTheme()
returns a ggplot2::theme
object
ggplot2::theme()
and ggplot2::ggplot()
data("test.dataset")
objCOTAN <- COTAN(raw = test.dataset)
objCOTAN <- clean(objCOTAN)
objCOTAN <- estimateDispersionNuBisection(objCOTAN, cores = 6L)
objCOTAN <- calculateCoex(objCOTAN, actOnCells = FALSE)
objCOTAN <- calculateCoex(objCOTAN, actOnCells = TRUE)
## some genes
primaryMarkers <- c("g-000010", "g-000020", "g-000030")
## an example of named list of different gene set
groupMarkers <- list(G1 = primaryMarkers,
G2 = c("g-000300", "g-000330"),
G3 = c("g-000510", "g-000530", "g-000550",
"g-000570", "g-000590"))
hPlot <- heatmapPlot(objCOTAN, pValueThreshold = 0.05,
genesLists = groupMarkers, sets = 2L:3L)
plot(hPlot)
ghPlot <- genesHeatmapPlot(objCOTAN, primaryMarkers = primaryMarkers,
secondaryMarkers = groupMarkers,
pValueThreshold = 0.05, symmetric = FALSE)
plot(ghPlot)
clusters <- c(rep_len("1", getNumCells(objCOTAN)/2),
rep_len("2", getNumCells(objCOTAN)/2))
names(clusters) <- getCells(objCOTAN)
chPlot <- cellsHeatmapPlot(objCOTAN, clusters = clusters)
## plot(chPlot)
theme <- plotTheme("pca")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.