#' @title BMI585 final project: pcLollipop function show a plot of PCA components with their importance
#' @description This functions accept a numberical dataframe
#' @param t: a numerical dataframe for PCA analysis
#' @return theplot: The plot is directly shown up
#' @examples
#' data(iris)
#' t<- iris[1:100,1:4]
#' theplot<-pcLollipop(t)
#' theplot
pcLollipop <- function(t){
res.pca<-prcomp(t,scale = TRUE,center=TRUE)
colname <-replicate(npc,'pca')
for (ind in 1:ncol(t)){
colname[ind] <- paste(c("pca",ind), collapse = "")
}
data <- data.frame(x=colname, standev=res.pca$sdev)
theplot<-ggplot(data, aes(x=x, y=standev)) +
geom_point() +
geom_segment( aes(x=x, xend=x, y=0, yend=standev))
return(theplot)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.