# Packages ----------------------------------------------------------------
library(tidyverse)
library(brms)
# Functions ---------------------------------------------------------------
devtools::load_all()
# Setup -------------------------------------------------------------------
seed <- 2022
chains <- 4
iter <- 10000
cores <- chains
samp_prior <- "yes"
# Loading Models ----------------------------------------------------------
fit_ri_int <- readRDS(file.path("models", "theta", "fit_ri_int.rds"))
fit_ri_no3int <- readRDS(file.path("models", "theta", "fit_ri_no3int.rds"))
fit_ri_tas_mask <- readRDS(file.path("models", "theta", "fit_ri_tas_mask.rds"))
fit_ri_aq_mask <- readRDS(file.path("models", "theta", "fit_ri_aq_mask.rds"))
fit_ri_tas_mask_subtle <- readRDS(file.path("models", "theta", "fit_ri_tas_mask_subtle.rds"))
fit_ri_aq_mask_subtle <- readRDS(file.path("models", "theta", "fit_ri_aq_mask_subtle.rds"))
# Legend ------------------------------------------------------------------
# un = uninformative
# Data --------------------------------------------------------------------
dat_fit <- readRDS(file = file.path("data", "cleaned", "dat_fit.rds"))
# Model 1 - mask * intensity * emotion -------------------------------------
prior_von_mises_un <- c(
prior(normal(0, 5), class = "b", dpar = ""), # betas prior
prior(normal(0, 5), class = "b", dpar = "kappa") # kappa prior
)
fit_ri_int_un <- brm(fit_ri_int$formula,
data = dat_fit,
family = von_mises(link = "tan_half", link_kappa = "log"),
chains = chains,
prior = prior_von_mises_un,
cores = cores,
iter = iter,
sample_prior = samp_prior,
backend = "cmdstanr",
threads = threading(6),
file = "models/theta/fit_ri_int_un",
save_pars = save_pars(all = TRUE),
seed = seed)
success_step(fit_ri_int_un)
# Model 2a - tas * mask -----------------------------------------------------
prior_von_mises_tas_mask_un <- c(
# theta
prior(normal(0, 5), class = "b", dpar = "", coef = "Intercept"),
prior(normal(0, 5), class = "b", dpar = "", coef = "mask_e1"),
prior(normal(0, 1), class = "b", dpar = "", coef = "tas"),
prior(normal(0, 1), class = "b", dpar = "", coef = "mask_e1:tas"),
# kappa
prior(normal(0, 5), class = "b", dpar = "kappa", coef = "Intercept"),
prior(normal(0, 5), class = "b", dpar = "kappa", coef = "mask_e1"),
prior(normal(0, 1), class = "b", dpar = "kappa", coef = "tas"),
prior(normal(0, 1), class = "b", dpar = "kappa", coef = "mask_e1:tas")
)
fit_ri_tas_mask_un <- brm(fit_ri_tas_mask$formula,
data = dat_fit,
family = von_mises(link = "tan_half", link_kappa = "log"),
chains = chains,
prior = prior_von_mises_tas_mask_un,
cores = cores,
iter = iter,
backend = "cmdstanr",
threads = threading(6),
sample_prior = samp_prior,
file = "models/theta/fit_ri_tas_mask_un",
save_pars = save_pars(all = TRUE),
seed = seed)
success_step(fit_ri_tas_mask_un)
# Model 2b - tas * mask (subtle) -------------------------------------------------
prior_von_mises_tas_mask_subtle_un <- c(
# theta
prior(normal(0, 7), class = "b", dpar = "", coef = "Intercept"),
prior(normal(0, 7), class = "b", dpar = "", coef = "mask_e1"),
prior(normal(0, 2), class = "b", dpar = "", coef = "tas"),
prior(normal(0, 2), class = "b", dpar = "", coef = "mask_e1:tas"),
# kappa
prior(normal(0, 7), class = "b", dpar = "kappa", coef = "Intercept"),
prior(normal(0, 7), class = "b", dpar = "kappa", coef = "mask_e1"),
prior(normal(0, 2), class = "b", dpar = "kappa", coef = "tas"),
prior(normal(0, 2), class = "b", dpar = "kappa", coef = "mask_e1:tas")
)
fit_ri_tas_mask_subtle_un <- brm(fit_ri_tas_mask_subtle$formula,
data = fit_ri_tas_mask_subtle$data,
family = von_mises(link = "tan_half", link_kappa = "log"),
chains = chains,
prior = prior_von_mises_tas_mask_subtle_un,
cores = cores,
iter = iter,
backend = "cmdstanr",
threads = threading(6),
sample_prior = samp_prior,
control = list(adapt_delta = 0.9),
file = "models/theta/fit_ri_tas_mask_subtle_un",
save_pars = save_pars(all = TRUE),
seed = seed)
success_step(fit_ri_tas_mask_subtle_un)
# Model 3a - aq * mask ------------------------------------------------------
prior_von_mises_aq_mask_un <- c(
# theta
prior(normal(0, 5), class = "b", dpar = "", coef = "Intercept"),
prior(normal(0, 5), class = "b", dpar = "", coef = "mask_e1"),
prior(normal(0, 1), class = "b", dpar = "", coef = "aq"),
prior(normal(0, 1), class = "b", dpar = "", coef = "mask_e1:aq"),
# kappa
prior(normal(0, 5), class = "b", dpar = "kappa", coef = "Intercept"),
prior(normal(0, 5), class = "b", dpar = "kappa", coef = "mask_e1"),
prior(normal(0, 1), class = "b", dpar = "kappa", coef = "aq"),
prior(normal(0, 1), class = "b", dpar = "kappa", coef = "mask_e1:aq")
)
fit_ri_aq_mask_un <- brm(fit_ri_aq_mask$formula,
data = dat_fit,
family = von_mises(link = "tan_half", link_kappa = "log"),
chains = chains,
prior = prior_von_mises_aq_mask_un,
cores = cores,
iter = iter,
backend = "cmdstanr",
threads = threading(6),
sample_prior = samp_prior,
file = "models/theta/fit_ri_aq_mask_un",
save_pars = save_pars(all = TRUE),
seed = seed)
success_step(fit_ri_aq_mask_un)
# Model 3b - aq * mask (subtle) ---------------------------------------------------
fit_ri_aq_mask_subtle_un <- brm(fit_ri_aq_mask_subtle$formula,
data = fit_ri_aq_mask_subtle$data,
family = von_mises(link = "tan_half", link_kappa = "log"),
chains = chains,
prior = prior_von_mises_aq_mask_un,
cores = cores,
iter = iter,
backend = "cmdstanr",
threads = threading(6),
sample_prior = samp_prior,
file = "models/theta/fit_ri_aq_mask_subtle_un",
save_pars = save_pars(all = TRUE),
seed = seed)
success_step(fit_ri_aq_mask_subtle_un)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.