plot_dsa: Function to plot resulits of sensitivity analysis...

Description Usage Arguments Value Examples

View source: R/deterministic_sensitivity_analysis_functions.R

Description

Function to plot resulits of sensitivity analysis do_sensitivity_analysis()

Usage

1
2
3
plot_dsa(result_dsa_control, plotfor, type = "range",
  result_dsa_treat = NULL, threshold = NULL, comparator = NULL,
  currency = "GBP")

Arguments

result_dsa_control

result from determnistic sensitivity analysis for first or control model

plotfor

the variable to plotfor e.g. cost, utility NMB etc

type

type of analysis, range or difference

result_dsa_treat

result from determnistic sensitivity analysis for the compartive markov mdoel

threshold

threshold value of WTP

comparator

the strategy to be compared with

currency

currency

Value

plot of sensitivity analysis

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
param_list<-define_parameters(cost_zido = 2278,cost_direct_med_A = 1701,
cost_comm_care_A = 1055,cost_direct_med_B = 1774,cost_comm_care_B = 1278,
cost_direct_med_C = 6948,cost_comm_care_C = 2059,tpAtoA = 1251/(1251+483),
tpAtoB = 350/(350+1384),tpAtoC = 116/(116+1618),tpAtoD = 17/(17+1717),
tpBtoB = 731/(731+527),tpBtoC = 512/(512+746),tpBtoD = 15/(15+1243),
tpCtoC = 1312/(1312+437), tpCtoD = 437/(437+1312),tpDtoD = 1,
cost_health_A = "cost_direct_med_A+ cost_comm_care_A",
cost_health_B = "cost_direct_med_B+ cost_comm_care_B",
cost_health_C = "cost_direct_med_C+ cost_comm_care_C",
cost_drug = "cost_zido")
low_values<-define_parameters(cost_direct_med_B = 177.4,cost_comm_care_C = 205.9)
upp_values<-define_parameters(cost_direct_med_B = 17740,cost_comm_care_C = 20590)
A <- health_state("A", cost="cost_health_A+ cost_drug ",utility=1)
B <- health_state("B", cost="cost_health_B + cost_drug",utility=1)
C <- health_state("C", cost="cost_health_C + cost_drug",utility=1)
D <- health_state("D", cost=0,utility=0)
tmat <- rbind(c(1, 2,3,4), c(NA, 5,6,7),c(NA, NA, 8,9), c(NA,NA,NA,10))
colnames(tmat) <- rownames(tmat) <- c("A","B" ,"C","D")
tm <- transition_matrix(4, tmat, c("tpAtoA","tpAtoB","tpAtoC","tpAtoD",
"tpBtoB", "tpBtoC", "tpBtoD","tpCtoC","tpCtoD","tpDtoD" ), colnames(tmat) )
health_states <- combine_state(A,B,C,D)
mono_strategy <- strategy(tm, health_states, "mono")
mono_markov <-markov_model(mono_strategy, 20, c(1, 0,0,0),c(0,0,0,0),discount=c(0.06,0),param_list)
param_table<-define_parameters_sens_anal(param_list, low_values, upp_values)
result<-do_sensitivity_analysis(mono_markov,param_table)
plot_dsa(result,"cost")

sheejamk/MarkovModel documentation built on Jan. 23, 2020, 2:44 a.m.