module[["hclust_plot"]] <- list(
label = "Hierarchical clustering",
help = "stats::hclust",
packages = "psych",
usable = function(analysis, group, data, input) {
(nrow(analysis)>1) && isTRUE(all(analysis$unique>1)) && (nrow(group)==0)
},
code = function(analysis, group, data, input) {
template("
0: library('psych')
0: x <- numeric_data(data, select={{x}})
0: keep <- is.finite(rowSums(x))
0: x <- x[keep,]
!1: x <- scale(x)
0: pc <- prcomp(x)
0: d <- dist(x, {{dist}})
0: hc_cl <- hclust(d, {{method}})
0: colcl <- hcl.colors({{n}})
0: clt <- cutree(hc_cl, {{n}})
0: layout(mat = matrix(c(1,1,2,1,1,3), ncol=2))
0: plot(pc$x[,1:2], col=colcl[clt], pch=19)
0: # dendrogram
0: rheight <- rev(hc_cl$height)
0: rh <- (rheight[{{n}}-1]+rheight[{{n}}])/2
0: plot(hc_cl, hang=-1, sub='', labels=FALSE, ylim=c(0, max(hc_cl$height)))
0: abline(h=rh, col='blue')
0: plot(1:15, rheight[1:15], pch=19, type='b', ylim=c(0, max(hc_cl$height)), xlim=c(1,15), xlab='Cluster', ylab='Height')
0: abline(h=rh, col='blue')
",
x=as_param(txt(row.names(analysis)), fun="c"),
n=getval(input$hclust_plot_n, 2),
dist=txt(getval(input$hclust_plot_dist, "euclidean")),
method=txt(getval(input$hclust_plot_method, "ward.D")),
getval(input$hclust_plot_covar, FALSE) #1
)
},
ui = function(analysis, group, data, input) {
list(checkboxInput("hclust_plot_covar", "Unstandardized data"),
sliderInput("hclust_plot_n", "Number of clusters", 2, 15, 2, 1),
splitLayout(cellWidths = c("50%", "50%"),
selectInput("hclust_plot_dist", "Distance", size=4, selectize=FALSE,
choices = toChoice(NA, "euclidean", "maximum", "manhattan", "canberra")),
selectInput("hclust_plot_method", "Method", size=4, selectize=FALSE,
choices = toChoice(NA, "ward.D", "ward.D2", "single", "complete", "average",
"mcquitty", "median", "centroid")))
)
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.