get_trial_likelihood <- function(value_up_boundary, value_down_boundary, d, theta, sigma, timeStep = 10,
approxStateStep = 0.1, barrier = 1, choice, FixItem, FixTime) {
correctedFixTime <- FixTime %/% timeStep
# [2]
#TRASFORMA I TEMPI DI FISSAZIONE DA MS IN MS/10 E SOMMA TUTTO. TENERE PRESENTE CHE QUESTO LAVORO È PER
# UN SINGOLO TRIAL. IN SOSTANZA RESTITUISCE LA LARGHEZZA DELLA TABELLA.
if ( sum(correctedFixTime) < 1 ) stop('fix_time più piccolo del timeStep')
numTimeSteps <- sum( correctedFixTime)
# [3]
# CREA TANTI 1 E -1 QUANTI SONO I TimeSteps (lunghezza tabella)
barrierUp <- rep(1, numTimeSteps)
barrierDown <- rep(-1, numTimeSteps)
# [4]
# CALCOLO DI stateStep, OSSIA DELL'AMPIEZZA DEI QUADRATINI VERTICALI
halfNumStateBins <- barrier /approxStateStep
stateStep <- barrier / (halfNumStateBins + 0.5)
# [5]
# Crea un'array 1-D di 21 elementi, rappresentatnti l'altezza della tabella
states <- seq(barrierDown[1] + (stateStep / 2),
barrierUp[1] - (stateStep / 2),
stateStep)
# [6]
# Crea una matrice di 0, eccetto che in corrispondenza dell'11 riga della prima colonna, dove ci piazza un 1.
prStates <- matrix(0, length(states), numTimeSteps)
prStates[which(states == 0), 1] <- 1
# [7]
# crea 161 0 per probUpCrossing e 161 0 per probDownCrossing, E RAPPRESENTANO LE PROBABILITÀ
probUpCrossing <- rep(0, numTimeSteps)
probDownCrossing <- rep(0, numTimeSteps)
# [8]
changeMatrix <- sapply(seq_along(states), function(i) states[i] - states )
changeUp <- sapply(seq_along(states), function(i) barrierUp - states[i] )
changeDown <- sapply(seq_along(states), function(i) barrierDown - states[i] )
# [9]
media <- sapply(seq_along(FixItem), function(i){
if (FixItem[i] == 1){#1 = sguardo verso up_boundary
mean <- d * (value_up_boundary - (theta * value_down_boundary))
} else if (FixItem[i] == -1){ #-1 = sguardo verso down_boundary
mean <- d * (theta*value_up_boundary - value_down_boundary)
} else if (FixItem[i]==3){
mean <- 0
} else {
stop('The FixItem variable must contain 1 or -1 values!')
}
})
tim <- cumsum( correctedFixTime)
i <- 1
for (time in 2:sum(correctedFixTime)) {
if ( time == (tim[i]+1) ) {
i <- i+1
mean <- media[i] } else if (time == 2){
mean <- media[1]
}
# Update the probability of the states that remain inside the barriers.
prStatesNew <- stateStep * apply(dnorm(changeMatrix, mean, sigma) * prStates[,time -1],
2, sum)
# Queta funzione non ho ben capito cosa faccia
prStatesNew[(states >= barrierUp[time]) |
(states <= barrierDown[time])] = 0
# Calculate the probabilities of crossing the up barrier and the down barrier.
tempUpCross <- sum(
prStates[, time - 1] * # Pi
(1-pnorm(changeUp[time, ], mean, sigma)))
tempDownCross <- sum(
prStates[, time - 1] *
(pnorm(changeDown[time, ], mean, sigma)))
# Renormalize to cope with numerical approximations.
sumIn <- sum(prStates[, time-1])
sumCurrent <- sum(prStatesNew) + tempUpCross + tempDownCross
if (sumCurrent != 0){
prStatesNew <- (prStatesNew * sumIn) / sumCurrent
tempUpCross <- (tempUpCross * sumIn) / sumCurrent
tempDownCross <- (tempDownCross * sumIn) / sumCurrent
} else {
prStatesNew <- (prStatesNew * 0)
tempUpCross <- (tempUpCross * sumIn)
tempDownCross <- (tempDownCross * sumIn)
print('Error: loglikelihood = 0!!!')
}
# Update the probabilities of each state and the probabilities
# of crossing each barrier at this timestep.
prStates[, time] <- prStatesNew
probUpCrossing[time] <- tempUpCross
probDownCrossing[time] <- tempDownCross
}
# [10]
# Compute the likelihood contribution of this trial based on the final choice.
likelihood <- 0
if (choice == -1){
if (tail(probDownCrossing, n = 1) > 0){
likelihood <- tail(probDownCrossing, n = 1)}
} else if (choice == 1){
if ( tail(probUpCrossing, n = 1) > 0){
likelihood <- tail(probUpCrossing, n = 1) }}
return(likelihood)
}
#system.time(
#get_trial_likelihood(value_up_boundary = 6, value_down_boundary = 5, d = 0.0041, theta = 0.36, sigma = 0.063,
# choice = 1, FixItem = c(-1, 1, -1, 1), FixTime = c(194, 574, 364,30))
#)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.