## ------------------------------------------------------------------------
library(MetaboAnalystR)
## When input is a list
# Create vector consisting of compounds for enrichment analysis
tmp.vec <- c("Acetoacetic acid", "Beta-Alanine", "Creatine", "Dimethylglycine", "Fumaric acid", "Glycine", "Homocysteine", "L-Cysteine", "L-Isolucine", "L-Phenylalanine", "L-Serine", "L-Threonine", "L-Tyrosine", "L-Valine", "Phenylpyruvic acid", "Propionic acid", "Pyruvic acid", "Sarcosine")
# Create mSetObj
mSet<-InitDataObjects("conc", "msetora", FALSE)
#Set up mSetObj with the list of compounds
mSet<-Setup.MapData(mSet, tmp.vec);
# Cross reference list of compounds against libraries (hmdb, pubchem, chebi, kegg, metlin)
mSet<-CrossReferencing(mSet, "name");
## ---- eval=FALSE---------------------------------------------------------
# # Example compound name map
# mSet$name.map
#
# $query.vec
# [1] "Acetoacetic acid" "Beta-Alanine" "Creatine" "Dimethylglycine" "Fumaric acid"
# [6] "Glycine" "Homocysteine" "L-Cysteine" "L-Isolucine" "L-Phenylalanine"
# [11] "L-Serine" "L-Threonine" "L-Tyrosine" "L-Valine" "Phenylpyruvic acid"
# [16] "Propionic acid" "Pyruvic acid" "Sarcosine"
#
# $hit.inx
# [1] 42 40 46 62 88 78 588 446 NA 104 120 109 103 702 131 159 164 185
#
# $hit.values
# [1] "Acetoacetic acid" "Beta-Alanine" "Creatine" "Dimethylglycine" "Fumaric acid"
# [6] "Glycine" "Homocysteine" "L-Cysteine" NA "L-Phenylalanine"
# [11] "L-Serine" "L-Threonine" "L-Tyrosine" "L-Valine" "Phenylpyruvic acid"
# [16] "Propionic acid" "Pyruvic acid" "Sarcosine"
#
# $match.state
# [1] 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
## ------------------------------------------------------------------------
# Create the mapping results table
mSet<-CreateMappingResultTable(mSet)
# Input the name of the compound without any matches
mSet<-PerformDetailMatch(mSet, "L-Isolucine");
# Create list of candidates to replace the compound
mSet <- GetCandidateList(mSet);
# Identify the name of the compound to replace
mSet<-SetCandidate(mSet, "L-Isolucine", "L-Isoleucine");
# Set the metabolite filter
mSet<-SetMetabolomeFilter(mSet, F);
# Select metabolite set library
mSet<-SetCurrentMsetLib(mSet, "smpdb_pathway", 2);
# Calculate hypergeometric score, results table generated in your working directory
mSet<-CalculateHyperScore(mSet)
# Plot the ORA, bar-graph
mSet<-PlotORA(mSet, "ora_0_", "bar", "png", 72, width=NA)
## ------------------------------------------------------------------------
# Create mSetObj
mSet<-InitDataObjects("conc", "msetqea", FALSE)
# Read in data table
mSet<-Read.TextData(mSet, "http://www.metaboanalyst.ca/MetaboAnalyst/resources/data/human_cachexia.csv", "rowu", "disc");
# Perform cross-referencing of compound names
mSet<-CrossReferencing(mSet, "name");
# Create mapping results table
mSet<-CreateMappingResultTable(mSet)
# Mandatory check of data
mSet<-SanityCheckData(mSet);
# Replace missing values with minimum concentration levels
mSet<-ReplaceMin(mSet);
# Perform no normalization
mSet<-PreparePrenormData(mSet)
mSet<-Normalization(mSet, "NULL", "NULL", "NULL", "PIF_178", ratio=FALSE, ratioNum=20)
# Plot normalization
mSet<-PlotNormSummary(mSet, "norm_0_", "png", 72, width=NA)
# Plot sample-wise normalization
mSet<-PlotSampleNormSummary(mSet, "snorm_0_", "png", 72, width=NA)
# Set the metabolome filter
mSet<-SetMetabolomeFilter(mSet, F);
# Set the metabolite set library to pathway
mSet<-SetCurrentMsetLib(mSet, "smpdb_pathway", 2);
# Calculate the global test score
mSet<-CalculateGlobalTestScore(mSet)
# Plot the QEA
mSet<-PlotQEA.Overview(mSet, "qea_0_", "bar", "png", 72, width=NA)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.