library("afex")
library("emmeans")
data(md_12.1)
a1 <- aov_ez("id", "rt", md_12.1, within = c("angle", "noise"))
emm1 <- emmeans(a1, "angle")
pairs(emm1)
# contrast estimate SE df t.ratio p.value
# X0 - X4 -108 18.9 18 -5.724 0.0001
# X0 - X8 -168 18.9 18 -8.904 <.0001
# X4 - X8 -60 18.9 18 -3.180 0.0137
#
# Results are averaged over the levels of: noise
# P value adjustment: tukey method for comparing a family of 3 estimates
emm2 <- emmeans(a1, "angle", model = "multivariate")
pairs(emm2)
# contrast estimate SE df t.ratio p.value
# X0 - X4 -108 17.4 9 -6.194 0.0004
# X0 - X8 -168 20.6 9 -8.159 0.0001
# X4 - X8 -60 18.4 9 -3.254 0.0244
#
# Results are averaged over the levels of: noise
# P value adjustment: tukey method for comparing a family of 3 estimates
sessionInfo()
# R version 4.0.3 (2020-10-10)
# Platform: x86_64-w64-mingw32/x64 (64-bit)
# Running under: Windows 10 x64 (build 19042)
#
# Matrix products: default
#
# locale:
# [1] LC_COLLATE=English_United Kingdom.1252
# [2] LC_CTYPE=English_United Kingdom.1252
# [3] LC_MONETARY=English_United Kingdom.1252
# [4] LC_NUMERIC=C
# [5] LC_TIME=English_United Kingdom.1252
#
# attached base packages:
# [1] stats graphics grDevices utils datasets methods base
#
# other attached packages:
# [1] emmeans_1.5.3 afex_0.28-0 lme4_1.1-26 Matrix_1.3-2
#
# loaded via a namespace (and not attached):
# [1] readxl_1.3.1 backports_1.2.1 jtools_2.1.2
# [4] plyr_1.8.6 igraph_1.2.6 splines_4.0.3
# [7] crosstalk_1.1.0.1 usethis_2.0.0 ggplot2_3.3.3
# [10] TH.data_1.0-10 rstantools_2.1.1 inline_0.3.17
# [13] digest_0.6.27 htmltools_0.5.0 rsconnect_0.8.16
# [16] lmerTest_3.1-3 fansi_0.4.1 magrittr_2.0.1
# [19] memoise_1.1.0 openxlsx_4.2.3 remotes_2.2.0
# [22] RcppParallel_5.0.2 matrixStats_0.57.0 xts_0.12.1
# [25] sandwich_3.0-0 prettyunits_1.1.1 colorspace_2.0-0
# [28] haven_2.3.1 xfun_0.20 dplyr_1.0.2
# [31] callr_3.5.1 crayon_1.3.4 jsonlite_1.7.2
# [34] survival_3.2-7 zoo_1.8-8 glue_1.4.2
# [37] gtable_0.3.0 V8_3.4.0 car_3.0-10
# [40] pkgbuild_1.2.0 rstan_2.21.2 abind_1.4-5
# [43] scales_1.1.1 mvtnorm_1.1-1 rstatix_0.6.0
# [46] miniUI_0.1.1.1 Rcpp_1.0.5 xtable_1.8-4
# [49] foreign_0.8-81 stats4_4.0.3 StanHeaders_2.21.0-7
# [52] DT_0.17 htmlwidgets_1.5.3 threejs_0.3.3
# [55] ellipsis_0.3.1 pkgconfig_2.0.3 loo_2.4.1
# [58] tidyselect_1.1.0 rlang_0.4.10 reshape2_1.4.4
# [61] later_1.1.0.1 munsell_0.5.0 cellranger_1.1.0
# [64] tools_4.0.3 cli_2.2.0 generics_0.1.0
# [67] devtools_2.3.2 broom_0.7.3 ggridges_0.5.3
# [70] evaluate_0.14 stringr_1.4.0 fastmap_1.0.1
# [73] yaml_2.2.1 processx_3.4.5 knitr_1.30
# [76] fs_1.5.0 zip_2.1.1 pander_0.6.3
# [79] purrr_0.3.4 nlme_3.1-151 mime_0.9
# [82] rstanarm_2.21.1 compiler_4.0.3 pbkrtest_0.5-0.1
# [85] bayesplot_1.8.0 shinythemes_1.1.2 rstudioapi_0.13
# [88] curl_4.3 testthat_3.0.1 ggsignif_0.6.0
# [91] tibble_3.0.4 statmod_1.4.35 stringi_1.5.3
# [94] ps_1.5.0 desc_1.2.0 forcats_0.5.0
# [97] lattice_0.20-41 nloptr_1.2.2.2 markdown_1.1
# [100] shinyjs_2.0.0 vctrs_0.3.6 pillar_1.4.7
# [103] lifecycle_0.2.0 estimability_1.3 data.table_1.13.6
# [106] httpuv_1.5.4 R6_2.5.0 promises_1.1.1
# [109] gridExtra_2.3 rio_0.5.16 sessioninfo_1.1.1
# [112] codetools_0.2-18 boot_1.3-25 colourpicker_1.1.0
# [115] MASS_7.3-53 gtools_3.8.2 assertthat_0.2.1
# [118] pkgload_1.1.0 rprojroot_2.0.2 withr_2.3.0
# [121] shinystan_2.5.0 multcomp_1.4-15 parallel_4.0.3
# [124] hms_0.5.3 grid_4.0.3 tidyr_1.1.2
# [127] coda_0.19-4 minqa_1.2.4 rmarkdown_2.6
# [130] carData_3.0-4 ggpubr_0.4.0 numDeriv_2016.8-1.1
# [133] shiny_1.5.0 base64enc_0.1-3 dygraphs_1.1.1.6
#################################################################
## new emmeans ##
#################################################################
library("afex")
library("emmeans")
data(md_12.1)
a1 <- aov_ez("id", "rt", md_12.1, within = c("angle", "noise"))
emm1 <- emmeans(a1, "angle")
pairs(emm1)
# contrast estimate SE df t.ratio p.value
# X0 - X4 -108 18.9 18 -5.724 0.0001
# X0 - X8 -168 18.9 18 -8.904 <.0001
# X4 - X8 -60 18.9 18 -3.180 0.0137
#
# Results are averaged over the levels of: noise
# P value adjustment: tukey method for comparing a family of 3 estimates
emm2 <- emmeans(a1, "angle", model = "multivariate")
pairs(emm2)
# contrast estimate SE df t.ratio p.value
# X0 - X4 -108 17.4 9 -6.194 0.0004
# X0 - X8 -168 20.6 9 -8.159 0.0001
# X4 - X8 -60 18.4 9 -3.254 0.0244
#
# Results are averaged over the levels of: noise
# P value adjustment: tukey method for comparing a family of 3 estimates
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.