library(terra)
library(dplyr)
somevar <- system.file("external/somevar.tif", package = "flexsdm")
somevar <- terra::rast(somevar) # environmental data
names(somevar) <- c("aet", "cwd", "tmx", "tmn")
cat <- system.file("external/clusters.shp", package = "flexsdm")
cat <- terra::vect(cat)
cat$clusters <- paste0("c", cat$clusters)
cat <- terra::rasterize(cat, somevar, field = "clusters")
somevar <- c(somevar, cat)
abies2 <- abies %>%
select(x, y, pr_ab)
abies2 <- sdm_extract(abies2,
x = "x",
y = "y",
env_layer = somevar
)
abies2 <- part_random(abies2,
pr_ab = "pr_ab",
method = c(method = "kfold", folds = 3)
)
svm_t1 <- fit_svm(
data = abies2,
response = "pr_ab",
predictors = c("aet", "cwd", "tmx", "tmn"),
predictors_f = "clusters",
partition = ".part",
thr = c("max_sens_spec")
)
test_that("test data_pdp with factor", {
df <- data_pdp(
model = svm_t1$model,
predictors = c("clusters"),
resolution = 100,
resid = TRUE,
projection_data = somevar,
training_data = abies2,
clamping = FALSE
)
expect_equal(names(df), c("pdpdata", "resid"))
expect_equal(nrow(df$pdpdata), 14)
})
test_that("test data_pdp", {
df <- data_pdp(
model = svm_t1$model,
predictors = c("aet"),
resolution = 100,
resid = TRUE,
projection_data = somevar,
training_data = abies2,
clamping = FALSE
)
expect_equal(names(df), c("pdpdata", "resid"))
expect_equal(length(df), 2)
df <- data_pdp(
model = svm_t1$model,
predictors = c("aet"),
resolution = 50,
resid = TRUE,
projection_data = somevar,
training_data = abies2,
clamping = FALSE
)
expect_equal(nrow(df$pdpdata), 50)
df <- data_pdp(
model = svm_t1$model,
predictors = c("aet"),
resolution = 50,
resid = TRUE,
projection_data = NULL,
training_data = abies2,
clamping = FALSE
)
expect_equal(nrow(df$pdpdata), 50)
df <- data_pdp(
model = svm_t1$model,
predictors = c("aet"),
resolution = 50,
resid = FALSE,
projection_data = NULL,
training_data = abies2,
clamping = FALSE
)
expect_true(is.null(df$resid))
})
library(terra)
library(dplyr)
somevar <- system.file("external/somevar.tif", package = "flexsdm")
somevar <- terra::rast(somevar) # environmental data
names(somevar) <- c("aet", "cwd", "tmx", "tmn")
cat <- system.file("external/clusters.shp", package = "flexsdm")
cat <- terra::vect(cat)
cat$clusters <- paste0("c", cat$clusters)
cat <- terra::rasterize(cat, somevar, field = "clusters")
somevar <- c(somevar, cat)
data(abies)
set.seed(123)
abies2 <- abies %>%
select(x, y, pr_ab) %>%
group_by(pr_ab) %>%
dplyr::slice_sample(n = 50)
set.seed(210)
abies2 <- sdm_extract(abies2,
x = "x",
y = "y",
env_layer = somevar
) %>%
part_random(
pr_ab = "pr_ab",
method = c(method = "kfold", folds = 3)
)
test_that("test pdp with gam", {
m_ <- fit_gam(
data = abies2, response = "pr_ab", predictors = c("aet", "cwd", "tmx", "tmn"), partition = ".part", thr = c("max_sens_spec")
)
df <- data_pdp(
model = m_$model,
predictors = c("aet"),
resolution = 50,
resid = TRUE,
projection_data = somevar,
training_data = abies2,
clamping = FALSE
)
expect_equal(nrow(df$pdpdata), 50)
expect_equal(length(df), 2)
# without residuals
df <- data_pdp(
model = m_$model,
predictors = c("aet"),
resolution = 50,
resid = FALSE,
projection_data = somevar,
training_data = abies2,
clamping = FALSE
)
expect_true(is.null(df$resid))
})
test_that("test pdp with gau", {
m_ <- fit_gau(
data = abies2, response = "pr_ab", predictors = c("aet", "cwd", "tmx", "tmn"), partition = ".part", thr = c("max_sens_spec")
)
df <- data_pdp(
model = m_$model,
predictors = c("aet"),
resolution = 50,
resid = TRUE,
projection_data = somevar,
training_data = abies2,
clamping = FALSE
)
expect_equal(nrow(df$pdpdata), 50)
expect_equal(length(df), 2)
# without residuals
df <- data_pdp(
model = m_$model,
predictors = c("aet"),
resolution = 50,
resid = FALSE,
projection_data = somevar,
training_data = abies2,
clamping = FALSE
)
expect_true(is.null(df$resid))
})
test_that("test pdp with gbm", {
m_ <- fit_gbm(
data = abies2, response = "pr_ab", predictors = c("aet", "cwd", "tmx", "tmn"), partition = ".part", thr = c("max_sens_spec")
)
df <- data_pdp(
model = m_$model,
predictors = c("aet"),
resolution = 50,
resid = TRUE,
projection_data = somevar,
training_data = abies2,
clamping = FALSE
)
expect_equal(nrow(df$pdpdata), 50)
expect_equal(length(df), 2)
# without residuals
df <- data_pdp(
model = m_$model,
predictors = c("aet"),
resolution = 50,
resid = FALSE,
projection_data = somevar,
training_data = abies2,
clamping = FALSE
)
expect_true(is.null(df$resid))
})
test_that("test pdp with glm", {
m_ <- fit_glm(
data = abies2, response = "pr_ab", predictors = c("aet", "cwd", "tmx", "tmn"), partition = ".part", thr = c("max_sens_spec")
)
df <- data_pdp(
model = m_$model,
predictors = c("aet"),
resolution = 50,
resid = TRUE,
projection_data = somevar,
training_data = abies2,
clamping = FALSE
)
expect_equal(nrow(df$pdpdata), 50)
expect_equal(length(df), 2)
# without residuals
df <- data_pdp(
model = m_$model,
predictors = c("aet"),
resolution = 50,
resid = FALSE,
projection_data = somevar,
training_data = abies2,
clamping = FALSE
)
expect_true(is.null(df$resid))
})
test_that("test pdp with max", {
m_ <- fit_max(
data = abies2, response = "pr_ab", predictors = c("aet", "cwd", "tmx", "tmn"), partition = ".part", thr = c("max_sens_spec")
)
df <- data_pdp(
model = m_$model,
predictors = c("aet"),
resolution = 50,
resid = TRUE,
projection_data = somevar,
training_data = abies2,
clamping = FALSE
)
expect_equal(nrow(df$pdpdata), 50)
expect_equal(length(df), 2)
# without residuals
df <- data_pdp(
model = m_$model,
predictors = c("aet"),
resolution = 50,
resid = FALSE,
projection_data = somevar,
training_data = abies2,
clamping = FALSE
)
expect_true(is.null(df$resid))
})
test_that("test pdp with net", {
m_ <- fit_net(
data = abies2, response = "pr_ab", predictors = c("aet", "cwd", "tmx", "tmn"), partition = ".part", thr = c("max_sens_spec")
)
df <- data_pdp(
model = m_$model,
predictors = c("aet"),
resolution = 50,
resid = TRUE,
projection_data = somevar,
training_data = abies2,
clamping = FALSE
)
expect_equal(nrow(df$pdpdata), 50)
expect_equal(length(df), 2)
expect_error(data_pdp(
model = m_$model,
predictors = c("aet"),
resolution = 50,
resid = TRUE,
projection_data = somevar,
training_data = NULL,
clamping = FALSE
))
# without residuals
df <- data_pdp(
model = m_$model,
predictors = c("aet"),
resolution = 50,
resid = FALSE,
projection_data = somevar,
training_data = abies2,
clamping = FALSE
)
expect_true(is.null(df$resid))
})
test_that("test pdp with raf", {
m_ <- fit_raf(
data = abies2, response = "pr_ab", predictors = c("aet", "cwd", "tmx", "tmn"), partition = ".part", thr = c("max_sens_spec")
)
df <- data_pdp(
model = m_$model,
predictors = c("aet"),
resolution = 50,
resid = TRUE,
projection_data = somevar,
training_data = abies2,
clamping = FALSE
)
expect_equal(nrow(df$pdpdata), 50)
expect_equal(length(df), 2)
# without residuals
df <- data_pdp(
model = m_$model,
predictors = c("aet"),
resolution = 50,
resid = FALSE,
projection_data = somevar,
training_data = abies2,
clamping = FALSE
)
expect_true(is.null(df$resid))
})
test_that("test pdp with svm", {
m_ <- fit_svm(
data = abies2, response = "pr_ab", predictors = c("aet", "cwd", "tmx", "tmn"), partition = ".part", thr = c("max_sens_spec")
)
df <- data_pdp(
model = m_$model,
predictors = c("aet"),
resolution = 50,
resid = TRUE,
projection_data = somevar,
training_data = abies2,
clamping = FALSE
)
expect_equal(nrow(df$pdpdata), 50)
expect_equal(length(df), 2)
# without residuals
df <- data_pdp(
model = m_$model,
predictors = c("aet"),
resolution = 50,
resid = FALSE,
projection_data = somevar,
training_data = abies2,
clamping = FALSE
)
expect_true(is.null(df$resid))
})
test_that("test pdp with factors", {
m_ <- fit_svm(
data = abies2, response = "pr_ab", predictors = c("aet", "cwd", "tmx", "tmn"), partition = ".part", thr = c("max_sens_spec")
)
df <- data_pdp(
model = m_$model,
predictors = c("aet"),
resolution = 50,
resid = TRUE,
projection_data = somevar,
training_data = abies2,
clamping = FALSE
)
expect_equal(nrow(df$pdpdata), 50)
expect_equal(length(df), 2)
# without residuals
df <- data_pdp(
model = m_$model,
predictors = c("aet"),
resolution = 50,
resid = FALSE,
projection_data = somevar,
training_data = abies2,
clamping = FALSE
)
expect_true(is.null(df$resid))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.