#' @title Fitting Linear Models and Plotting
#' @param stan dataFrame for fitting linear polynomial regression
#' @param res numeric vector used for prediction
#' @param stan.x the name used for x axis of the fitting plot
#' @param stan.y the name used for y axis of the fitting plot
#' @param predict TRUE or FALSE
#' @param predict.inverse TRUE or FALSE
#' @param toppt TRUE or FALSE
#' @param ppt.fw figure width in ppt
#' @param ppt.fh figure height in ppt
#' @description Fitting data with linear polynomial regression.
#' Plotting fitting curve and export to ppt.
#' The (inverse) prediction for new data
#' @importFrom stats lm
#' @importFrom stats coef
#' @importFrom ggplot2 ggplot
#' @importFrom ggplot2 aes
#' @importFrom ggplot2 geom_point
#' @importFrom ggplot2 geom_smooth
#' @importFrom ggplot2 labs
#' @importFrom ggplot2 xlab
#' @importFrom ggplot2 ylab
#' @importFrom ggplot2 theme
#' @importFrom ggplot2 geom_text
#' @importFrom ggplot2 theme_set
#' @importFrom ggplot2 theme_bw
#' @importFrom ggplot2 element_text
#' @importFrom eoffice topptx
#' @return a list containing fit and plot
#' @author Pan Gao
#' @export
linear <- function (stan, res, stan.x=NULL, stan.y=NULL, ppt.fw = 5, ppt.fh = 4,
toppt = FALSE, predict = TRUE, predict.inverse = FALSE) {
if (is.null(stan.x)) {
stan.x <- colnames(stan)[1]
}
if (is.null(stan.y)) {
stan.y <- colnames(stan)[2]
}
fit <- lm(formula = stan[,stan.y] ~ stan[, stan.x], data = stan)
label <- data.frame(formula = sprintf(" italic(y) == %.2f %+.2f * italic(x)",
round(coef(fit)[1], 2),
round(coef(fit)[2], 2)),
r2 = sprintf(" italic(R^2) == %.2f",
round(summary(fit)$r.squared, 2)),
rse = paste(" Residual standard error:",
round(summary(fit)$sigma, 2)),
stringsAsFactors = FALSE)
cat("Linear regression")
print(fit)
theme_set(theme_bw())
p<-ggplot(data = stan, aes(x = stan[, stan.x], y = stan[, stan.y])) +
geom_point() + geom_smooth(method = lm, formula = y ~ x,se = F) +
xlab(label = stan.x) + ylab(label = stan.y) +
labs(title = "Linear regression") + theme(title = element_text(size = 8)) +
geom_text(data = label, aes(x = -Inf, y = 8*max(stan[, stan.y])/10,
label = formula),
hjust = 0, vjust = 1, parse = TRUE,
inherit.aes = FALSE, size = 2.5) +
geom_text(data = label, aes(x = -Inf, y = 7*max(stan[, stan.y])/10,
label = r2),
hjust = 0, vjust = 1, parse = TRUE,
inherit.aes = FALSE, size = 2.5)
# geom_text(data = label, aes(x = -Inf, y = 6*max(stan[, stan.y])/10, label = rse),
# hjust = 0, vjust = 1,
# inherit.aes = FALSE, size = 2.5)
print(p)
if (isTRUE(toppt)) {
topptx(figure = p, filename = "Linear regression.pptx",
width = ppt.fw, height = ppt.fh)
}
int <- coef(fit)[1]
beta <- coef(fit)[2]
if (isTRUE(predict)) {
fit <- function(x, int, beta){
f <- int + beta*x
return(f)
}
pre <- fit(res, int, beta)
}
if (isTRUE(predict.inverse)) {
Inv.fit <- function(y, int, beta){
f <- (y - int)/ beta
return(f)
}
pre.inv <- Inv.fit(res, int, beta)
}
if (predict.inverse == FALSE & predict == TRUE) {
predict_fit <- cbind.data.frame(res, pre)
linearFit <- list(predict = predict_fit, plot = p)
return(linearFit)
}
if (predict.inverse == TRUE & predict == FALSE) {
predict_fit <- cbind.data.frame(res, pre.inv)
linearFit <- list(predict = predict_fit, plot = p)
return(linearFit)
}
if (predict.inverse == TRUE & predict == TRUE) {
predict_fit <- cbind.data.frame(res, pre, pre.inv)
linearFit <- list(predict = predict_fit, plot = p)
return(linearFit)
}
if (predict.inverse == FALSE & predict == FALSE) {
return(p)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.