knitr::opts_chunk$set(comment = FALSE, warning = FALSE, message = FALSE)
require(IgGeneUsage) require(rstan) require(knitr) require(ggplot2) require(ggforce) require(ggrepel) require(reshape2) require(patchwork)
Decoding the properties of immune receptor repertoires (IRRs) is key to understanding how our adaptive immune system responds to challenges, such as viral infection or cancer. One important quantitative property of IRRs is their immunoglobulin (Ig) gene usage, i.e. how often are the differnt Igs that make up the immune receptors used in a given IRR. Furthermore, we may ask: is there differential gene usage (DGU) between IRRs from different biological conditions (e.g. healthy vs tumor).
Both of these questions can be answered quantitatively by are answered by
r Biocpkg("IgGeneUsage")
.
The main input of r Biocpkg("IgGeneUsage")
is a data.frame that has the
following columns:
r Biocpkg("IgGeneUsage")
transforms the input data as follows.
First, given $R$ repertoires with $G$ genes each, r Biocpkg("IgGeneUsage")
generates a gene usage matrix $Y^{R \times G}$. Row sums in $Y$ define the
total usage ($N$) in each repertoire.
Second, for the analysis of DGU between biological conditions, we use a Bayesian model ($M$) for zero-inflated beta-binomial regression. Empirically, we know that Ig gene usage data can be noisy also not exhaustive, i.e. some Ig genes that are systematically rearranged at low probability might not be sampled, and certain Ig genes are not encoded (or dysfunctional) in some individuals. $M$ can fit over-dispersed and zero-inflated Ig gene usage data.
In the output of r Biocpkg("IgGeneUsage")
, we report the mean effect
size (es or $\gamma$) and its 95% highest density interval (HDI). Genes with
$\gamma \neq 0$ (e.g. if 95% HDI of $\gamma$ excludes 0) are most likely
to experience differential usage. Additionally, we report the probability of
differential gene usage ($\pi$):
\begin{align}
\pi = 2 \cdot \max\left(\int_{\gamma = -\infty}^{0} p(\gamma)\mathrm{d}\gamma,
\int_{\gamma = 0}^{\infty} p(\gamma)\mathrm{d}\gamma\right) - 1
\end{align}
with $\pi = 1$ for genes with strong differential usage, and $\pi = 0$ for
genes with negligible differential gene usage. Both metrics are computed based
on the posterior distribution of $\gamma$, and are thus related.
r Biocpkg("IgGeneUsage")
has a couple of built-in Ig gene usage datasets.
Some were obtained from studies and others were simulated.
Lets look into the simulated dataset d_zibb_3
. This dataset was generated
by a zero-inflated beta-binomial (ZIBB) model, and r Biocpkg("IgGeneUsage")
was designed to fit ZIBB-distributed data.
data("d_zibb_3", package = "IgGeneUsage") knitr::kable(head(d_zibb_3))
We can also visualize d_zibb_3
with r CRANpkg("ggplot")
:
ggplot(data = d_zibb_3)+ geom_point(aes(x = gene_name, y = gene_usage_count, col = condition), position = position_dodge(width = .7), shape = 21)+ theme_bw(base_size = 11)+ ylab(label = "Gene usage [count]")+ xlab(label = '')+ theme(legend.position = "top")+ theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.4))
As main input r Biocpkg("IgGeneUsage")
uses a data.frame formatted as e.g.
d_zibb_3
. Other input parameters allow you to configure specific settings
of the r CRANpkg("rstan")
sampler.
In this example, we analyze d_zibb_3
with 3 MCMC chains, 1500 iterations
each including 500 warm-ups using a single CPU core (Hint: for parallel
chain execution set parameter mcmc_cores
= 3). We report for each model
parameter its mean and 95% highest density interval (HDIs).
Important remark: you should run DGU analyses using default
r Biocpkg("IgGeneUsage")
parameters. If warnings or errors are reported
with regard to the MCMC sampling, please consult the Stan manual^2 and
adjust the inputs accordingly. If the warnings persist, please submit an
issue with a reproducible script at the Bioconductor support site or on
Github^3.
M <- DGU(ud = d_zibb_3, # input data mcmc_warmup = 300, # how many MCMC warm-ups per chain (default: 500) mcmc_steps = 1500, # how many MCMC steps per chain (default: 1,500) mcmc_chains = 3, # how many MCMC chain to run (default: 4) mcmc_cores = 1, # how many PC cores to use? (e.g. parallel chains) hdi_lvl = 0.95, # highest density interval level (de fault: 0.95) adapt_delta = 0.8, # MCMC target acceptance rate (default: 0.95) max_treedepth = 10) # tree depth evaluated at each step (default: 12)
In the output of DGU, we provide the following objects:
dgu
and dgu_prob
(main results of r Biocpkg("IgGeneUsage")
):
quantitative DGU summary on a log- and probability-scale, respectively.gu
: condition-specific relative gene usage (GU) of each genetheta
: probabilities of gene usage in each sampleppc
: posterior predictive checks data (see section 'Model checking')ud
: processed Ig gene usage data fit
: rstan ('stanfit') object of the fitted model $\rightarrow$ used
for model checks (see section 'Model checking')summary(M)
Check your model fit. For this, you can use the object glm.
Minimal checklist of successful MCMC sampling^2:
rstan::check_hmc_diagnostics(M$fit)
rstan::stan_rhat(object = M$fit)|rstan::stan_ess(object = M$fit)
The model used by r Biocpkg("IgGeneUsage")
is generative, i.e. with the
model we can generate usage of each Ig gene in a given repertoire (y-axis).
Error bars show 95% HDI of mean posterior prediction. The predictions can be
compared with the observed data (x-axis). For points near the diagonal
$\rightarrow$ accurate prediction.
ggplot(data = M$ppc$ppc_rep)+ facet_wrap(facets = ~individual_id, ncol = 5)+ geom_abline(intercept = 0, slope = 1, linetype = "dashed", col = "darkgray")+ geom_errorbar(aes(x = observed_count, y = ppc_mean_count, ymin = ppc_L_count, ymax = ppc_H_count), col = "darkgray")+ geom_point(aes(x = observed_count, y = ppc_mean_count), size = 1)+ theme_bw(base_size = 11)+ theme(legend.position = "top")+ xlab(label = "Observed usage [counts]")+ ylab(label = "PPC usage [counts]")
Prediction of generalized gene usage within a biological condition is also possible. We show the predictions (y-axis) of the model, and compare them against the observed mean usage (x-axis). If the points are near the diagonal $\rightarrow$ accurate prediction. Errors are 95% HDIs of the mean.
ggplot(data = M$ppc$ppc_condition)+ geom_errorbar(aes(x = gene_name, ymin = ppc_L_prop*100, ymax = ppc_H_prop*100, col = condition), position = position_dodge(width = 0.65), width = 0.1)+ geom_point(aes(x = gene_name, y = ppc_mean_prop*100,col = condition), position = position_dodge(width = 0.65))+ theme_bw(base_size = 11)+ theme(legend.position = "top")+ xlab(label = "Observed usage [%]")+ ylab(label = "PPC usage [%]")+ theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.4))
Each row of glm
summarizes the degree of DGU observed for specific
Igs. Two metrics are reported:
es
(also referred to as $\gamma$): effect size on DGU, where contrast
gives the direction of the effect (e.g. tumor - healthy or healthy - tumor)pmax
(also referred to as $\pi$): probability of DGU (parameter $\pi$
from model $M$)For es
we also have the mean, median standard error (se), standard
deviation (sd), L (low bound of 95% HDI), H (high bound of 95% HDI)
kable(x = head(M$dgu), row.names = FALSE, digits = 2)
We know that the values of \gamma
and \pi
are related to each other.
Lets visualize them for all genes (shown as a point). Names are shown for
genes associated with $\pi \geq 0.95$. Dashed horizontal line represents
null-effect ($\gamma = 0$).
Notice that the gene with $\pi \approx 1$ also has an effect size whose 95% HDI (error bar) does not overlap the null-effect. The genes with high degree of differential usage are easy to detect with this figure.
# format data stats <- M$dgu stats <- stats[order(abs(stats$es_mean), decreasing = FALSE), ] stats$gene_fac <- factor(x = stats$gene_name, levels = unique(stats$gene_name)) ggplot(data = stats)+ geom_hline(yintercept = 0, linetype = "dashed", col = "gray")+ geom_errorbar(aes(x = pmax, y = es_mean, ymin = es_L, ymax = es_H), col = "darkgray")+ geom_point(aes(x = pmax, y = es_mean, col = contrast))+ geom_text_repel(data = stats[stats$pmax >= 0.95, ], aes(x = pmax, y = es_mean, label = gene_fac), min.segment.length = 0, size = 2.75)+ theme_bw(base_size = 11)+ theme(legend.position = "top")+ xlab(label = expression(pi))+ xlim(c(0, 1))+ ylab(expression(gamma))
Lets visualize the observed data of the genes with high probability of differential gene usage ($\pi \geq 0.95$). Here we show the gene usage in %.
promising_genes <- stats$gene_name[stats$pmax >= 0.95] ppc_gene <- M$ppc$ppc_condition ppc_gene <- ppc_gene[ppc_gene$gene_name %in% promising_genes, ] ppc_rep <- M$ppc$ppc_rep ppc_rep <- ppc_rep[ppc_rep$gene_name %in% promising_genes, ] ggplot()+ geom_point(data = ppc_rep, aes(x = gene_name, y = observed_prop*100, col = condition), size = 1, fill = "black", position = position_jitterdodge(jitter.width = 0.1, jitter.height = 0, dodge.width = 0.35))+ geom_errorbar(data = ppc_gene, aes(x = gene_name, ymin = ppc_L_prop*100, ymax = ppc_H_prop*100, group = condition), position = position_dodge(width = 0.35), width = 0.15)+ theme_bw(base_size = 11)+ theme(legend.position = "top")+ theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.4))+ ylab(label = "PPC usage [%]")+ xlab(label = '')
Lets also visualize the predicted gene usage counts in each repertoire.
ggplot()+ geom_point(data = ppc_rep, aes(x = gene_name, y = observed_count, col = condition), size = 1, fill = "black", position = position_jitterdodge(jitter.width = 0.1, jitter.height = 0, dodge.width = 0.5))+ theme_bw(base_size = 11)+ theme(legend.position = "top")+ ylab(label = "PPC usage [count]")+ xlab(label = '')+ theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.4))
r Biocpkg("IgGeneUsage")
also reports the inferred gene usage (GU)
probability of individual genes in each condition. For a given gene we
report its mean GU (prob_mean
) and the 95% (for instance) HDI (prob_L
and prob_H
).
ggplot(data = M$gu)+ geom_errorbar(aes(x = gene_name, y = prob_mean, ymin = prob_L, ymax = prob_H, col = condition), width = 0.1, position = position_dodge(width = 0.4))+ geom_point(aes(x = gene_name, y = prob_mean, col = condition), size = 1, position = position_dodge(width = 0.4))+ theme_bw(base_size = 11)+ theme(legend.position = "top")+ ylab(label = "GU [probability]")+ theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.4))
To assert the robustness of the probability of DGU ($\pi$) and the effect
size ($\gamma$), r Biocpkg("IgGeneUsage")
has a built-in procedure for
fully Bayesian leave-one-out (LOO) analysis.
During each step of LOO, we discard the data of one of the R repertoires, and use the remaining data to analyze for DGU. In each step we record $\pi$ and $\gamma$ for all genes, including the mean and 95% HDI of $\gamma$. We assert quantitatively the robustness of $\pi$ and $\gamma$ by evaluating their variability for a specific gene.
This analysis can be computationally demanding.
L <- LOO(ud = d_zibb_3, # input data mcmc_warmup = 500, # how many MCMC warm-ups per chain (default: 500) mcmc_steps = 1000, # how many MCMC steps per chain (default: 1,500) mcmc_chains = 1, # how many MCMC chain to run (default: 4) mcmc_cores = 1, # how many PC cores to use? (e.g. parallel chains) hdi_lvl = 0.95, # highest density interval level (de fault: 0.95) adapt_delta = 0.8, # MCMC target acceptance rate (default: 0.95) max_treedepth = 10) # tree depth evaluated at each step (default: 12)
Next, we collected the results (GU and DGU) from each LOO iteration:
L_gu <- do.call(rbind, lapply(X = L, FUN = function(x){return(x$gu)})) L_dgu <- do.call(rbind, lapply(X = L, FUN = function(x){return(x$dgu)}))
... and plot them:
ggplot(data = L_dgu)+ facet_wrap(facets = ~contrast, ncol = 1)+ geom_hline(yintercept = 0, linetype = "dashed", col = "gray")+ geom_errorbar(aes(x = gene_name, y = es_mean, ymin = es_L, ymax = es_H, col = contrast, group = loo_id), width = 0.1, position = position_dodge(width = 0.75))+ geom_point(aes(x = gene_name, y = es_mean, col = contrast, group = loo_id), size = 1, position = position_dodge(width = 0.75))+ theme_bw(base_size = 11)+ theme(legend.position = "none")+ ylab(expression(gamma))
ggplot(data = L_dgu)+ facet_wrap(facets = ~contrast, ncol = 1)+ geom_point(aes(x = gene_name, y = pmax, col = contrast, group = loo_id), size = 1, position = position_dodge(width = 0.5))+ theme_bw(base_size = 11)+ theme(legend.position = "none")+ ylab(expression(pi))
ggplot(data = L_gu)+ geom_hline(yintercept = 0, linetype = "dashed", col = "gray")+ geom_errorbar(aes(x = gene_name, y = prob_mean, ymin = prob_L, ymax = prob_H, col = condition, group = interaction(loo_id, condition)), width = 0.1, position = position_dodge(width = 1))+ geom_point(aes(x = gene_name, y = prob_mean, col = condition, group = interaction(loo_id, condition)), size = 1, position = position_dodge(width = 1))+ theme_bw(base_size = 11)+ theme(legend.position = "top")+ ylab("GU [probability]")+ theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.4))
data("d_zibb_4", package = "IgGeneUsage") knitr::kable(head(d_zibb_4))
We can also visualize d_zibb_4
with r CRANpkg("ggplot")
:
ggplot(data = d_zibb_4)+ geom_point(aes(x = gene_name, y = gene_usage_count, col = condition, shape = replicate), position = position_dodge(width = 0.8))+ theme_bw(base_size = 11)+ ylab(label = "Gene usage [count]")+ xlab(label = '')+ theme(legend.position = "top")+ theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.4))
M <- DGU(ud = d_zibb_4, # input data mcmc_warmup = 500, # how many MCMC warm-ups per chain (default: 500) mcmc_steps = 1500, # how many MCMC steps per chain (default: 1,500) mcmc_chains = 2, # how many MCMC chain to run (default: 4) mcmc_cores = 1, # how many PC cores to use? (e.g. parallel chains) hdi_lvl = 0.95, # highest density interval level (de fault: 0.95) adapt_delta = 0.8, # MCMC target acceptance rate (default: 0.95) max_treedepth = 10) # tree depth evaluated at each step (default: 12)
ggplot(data = M$ppc$ppc_rep)+ facet_wrap(facets = ~individual_id, ncol = 3)+ geom_abline(intercept = 0, slope = 1, linetype = "dashed", col = "darkgray")+ geom_errorbar(aes(x = observed_count, y = ppc_mean_count, ymin = ppc_L_count, ymax = ppc_H_count), col = "darkgray")+ geom_point(aes(x = observed_count, y = ppc_mean_count), size = 1)+ theme_bw(base_size = 11)+ theme(legend.position = "top")+ xlab(label = "Observed usage [counts]")+ ylab(label = "PPC usage [counts]")
The top panel shows the average gene usage (GU) in different biological conditions. The bottom panels shows the differential gene usage (DGU) between pairs of biological conditions.
g1 <- ggplot(data = M$gu)+ geom_errorbar(aes(x = gene_name, y = prob_mean, ymin = prob_L, ymax = prob_H, col = condition), width = 0.1, position = position_dodge(width = 0.4))+ geom_point(aes(x = gene_name, y = prob_mean, col = condition), size = 1, position = position_dodge(width = 0.4))+ theme_bw(base_size = 11)+ theme(legend.position = "top")+ ylab(label = "GU [probability]")+ theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.4)) stats <- M$dgu stats <- stats[order(abs(stats$es_mean), decreasing = FALSE), ] stats$gene_fac <- factor(x = stats$gene_name, levels = unique(stats$gene_name)) g2 <- ggplot(data = stats)+ facet_wrap(facets = ~contrast)+ geom_hline(yintercept = 0, linetype = "dashed", col = "gray")+ geom_errorbar(aes(x = pmax, y = es_mean, ymin = es_L, ymax = es_H), col = "darkgray")+ geom_point(aes(x = pmax, y = es_mean, col = contrast))+ geom_text_repel(data = stats[stats$pmax >= 0.95, ], aes(x = pmax, y = es_mean, label = gene_fac), min.segment.length = 0, size = 2.75)+ theme_bw(base_size = 11)+ theme(legend.position = "top")+ xlab(label = expression(pi))+ xlim(c(0, 1))+ ylab(expression(gamma))
(g1/g2)
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.