getCdr3LengthChargePosterior <- function(glm.cdr3.length,
hdi.level,
cdr3.data,
stan.data) {
summary.sample <- rstan::summary(object = glm.cdr3.length,
digits = 4, pars = "mu_sample",
prob = c(0.5, (1-hdi.level)/2,
1-(1-hdi.level)/2))
summary.sample <- summary.sample$summary
summary.sample <- data.frame(summary.sample)
colnames(summary.sample) <- c("mean", "mean_se",
"mean_sd", "mean_median",
"mean_L", "mean_H",
"Neff", "Rhat")
summary.sample$sample_id <- unique(stan.data$G)
summary.sample$sample <- unique(stan.data$Gorg)
summary.sample$condition <- stan.data$Corg
summary.condition <- rstan::summary(object = glm.cdr3.length,
digits = 4, pars = "mu_condition",
prob = c(0.5, (1-hdi.level)/2,
1-(1-hdi.level)/2))
summary.condition <- summary.condition$summary
summary.condition <- data.frame(summary.condition)
colnames(summary.condition) <- c("mean", "mean_se",
"mean_sd", "mean_median",
"mean_L", "mean_H",
"Neff", "Rhat")
summary.condition$condition <- NA
for(i in 1:nrow(summary.condition)) {
summary.condition$condition[i] <- stan.data$Corg[stan.data$C == i][1]
}
# return
return (list(summary.sample = summary.sample,
summary.condition = summary.condition))
}
getCdr3AAPosterior <- function(glm.cdr3.aa, hdi.level, cdr3.data) {
cdr3.data.unique <- cdr3.data[duplicated(cdr3.data$sample_id) == FALSE, ]
summary.sample <- rstan::summary(object = glm.cdr3.aa,
digits = 4, pars = "mu_sample",
prob = c(0.5, (1-hdi.level)/2,
1-(1-hdi.level)/2))
summary.sample <- summary.sample$summary
summary.sample <- data.frame(summary.sample)
colnames(summary.sample) <- c("mean", "mean_se",
"mean_sd", "mean_median",
"mean_L", "mean_H",
"Neff", "Rhat")
summary.sample$sample_id <- rep(x = cdr3.data.unique$sample_id, each = 20)
summary.sample$sample <- rep(x = cdr3.data.unique$sample, each = 20)
summary.sample$condition <- rep(x = cdr3.data.unique$condition, each = 20)
summary.sample$AA <- rep(x = Biostrings::AA_STANDARD,
times = max(cdr3.data.unique$sample_id))
summary.condition <- rstan::summary(object = glm.cdr3.aa,
digits = 4, pars = "mu_condition",
prob = c(0.5, (1-hdi.level)/2,
1-(1-hdi.level)/2))
summary.condition <- summary.condition$summary
summary.condition <- data.frame(summary.condition)
colnames(summary.condition) <- c("mean", "mean_se",
"mean_sd", "mean_median",
"mean_L", "mean_H",
"Neff", "Rhat")
cs <- NA
for(i in 1:nrow(summary.condition)) {
cs <- c(cs, rep(x = cdr3.data.unique$condition[cdr3.data.unique$C == i][1], each = 20))
}
summary.condition$condition <- cs
summary.condition$AA <- rep(x = Biostrings::AA_STANDARD,
times = max(cdr3.data.unique$C))
# return
return (list(summary.sample = summary.sample,
summary.condition = summary.condition))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.