### Perform H0: alpha/(alpha + beta) >= 0.05 vs Ha: alpha/(alpha + beta) < 0.05
lrt2 <- function(PV.gbd, CLASS.gbd, K, H0.mean = .FC.CT$LRT$H0.mean,
upper.beta = .FC.CT$INIT$BETA.beta.max,
proc = c("1", "2", "weight")){
if((H0.mean <= 0) || (H0.mean >= 1.0)){
stop("It should be 0 < H0.mean < 1.0.")
}
K.CLASS <- as.integer(max.gbd(CLASS.gbd))
if(K.CLASS > K){
stop("CLASS.gbd and K are not matched.")
}
beta.scale <- H0.mean / (1 - H0.mean)
### For optim() and H0.
fn.H0 <- function(theta, x.gbd){
-sum_gbd(dbeta(x.gbd, theta[1], theta[2], log = TRUE))
}
ui.H0 <- rbind(c(1, 0), c(1 - H0.mean, -H0.mean), c(0, 1))
ci.H0 <- c(0, 0, 0)
### For constrOptim() and Ha.
fn.Ha <- function(theta, x.gbd){
-sum_gbd(dbeta(x.gbd, theta[1], theta[2], log = TRUE))
}
ui.Ha <- rbind(c(1, 0), c(0, 1))
ci.Ha <- c(0, 0)
ret <- NULL
for(i.k in 1:K){
N.class.gbd <- sum_gbd(CLASS.gbd == i.k)
if(N.class.gbd > 0){ # in case of empty cluster.
tmp.gbd <- PV.gbd[CLASS.gbd == i.k]
### logL under H0.
tmp <- constrOptim(c(beta.scale * 1.02, 1.01), fn.H0, NULL, ui.H0, ci.H0,
method = "Nelder-Mead", x.gbd = tmp.gbd)
H0.alpha <- tmp$par[1]
H0.beta <- tmp$par[2]
logL.0 <- -tmp$value
### logL under Ha.
tmp <- constrOptim(c(beta.scale * 0.99, 1.01), fn.Ha, NULL, ui.Ha, ci.Ha,
method = "Nelder-Mead", x.gbd = tmp.gbd)
Ha.alpha <- tmp$par[1]
Ha.beta <- tmp$par[2]
logL.a <- -tmp$value
### LRT.
lrt <- -2 * (logL.0 - logL.a)
if(lrt < 0){
lrt <- 0
}
### p-value.
p.value <- pchisq(lrt, 1, lower.tail = FALSE)
ret <- rbind(ret, c(i.k, H0.alpha, H0.beta, Ha.alpha, Ha.beta,
logL.0, logL.a, lrt, p.value))
} else{
ret <- rbind(ret, c(i.k, rep(NA, 8)))
}
}
if(proc[1] == "1"){
ret <- cbind(ret, qvalue(ret[, ncol(ret)]))
} else if(proc[1] == "2"){
qvalue.p2 <- fdr.bh.p2(ret[, ncol(ret)], q = 0.05)$adjp
ret <- cbind(ret, qvalue.p2)
} else if(proc[1] == "weight"){
w.size <- rep(0, K)
for(i.k in 1:K){
w.size[i.k] <- sum_gbd(CLASS.gbd == i.k)
}
w.size <- w.size / sum(w.size) * K
qvalue.w <- fdr.bh.p2(ret[, ncol(ret)], w = w.size, q = 0.05)$adjp
ret <- cbind(ret, qvalue.w)
} else{
stop("proc is not found.")
}
colnames(ret) <- c("i.k", "mle.0.alpha", "mle.0.beta",
"mle.a.alpha", "mle.a.beta",
"logL.0", "logL.a", "lrt", "p.value", "q.value")
ret
} # End of lrt2().
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.