computeCI: Combination Index Calculation

Description Usage Arguments Value Examples

View source: R/computeCI.R

Description

Takes a dataframe containing drug combination data and calculates combination indices at specified effective doses.

Usage

1
computeCI(data, edvec, frac1, frac2, viability_as_pct)

Arguments

data

A dataframe containing drug combination assay data. It should contain columns:

'Conc1': dosage of drug A;

'Conc2': dosage of drug B;

'Response': measured viability - as a percentage or a decimal value;

'Drug1': name of first drug;

'Drug2': name of second drug.

edvec

A numeric vector containing the ED values to calculate CI at.

frac1

A numeric value denoting mixture ratio of drug A relative to drug B.

frac2

A numeric value denoting mixture ratio of drug B relative to drug A.

viability_as_pct

A logical value; set TRUE if viability measurements are in percentages; FALSE if in decimals.

Value

A dataframe containing two columns; ED and CI - combination indices at each specified EDs.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
## Not run: 
drug1_name <- 'Drug A'
drug2_name <- 'Drug B'
mydata_combo <- data.frame('Conc1' = c(500, 400, 300, 200, 100), 'Conc2' = c(50, 40, 30, 20, 10), 'Response' = c(0.042, 0.122, 0.259, 0.532, 0.818))

mydata_mono1 <- data.frame('Conc1' = c(500, 400, 300, 200, 100), 'Conc2' = rep(0, 5), 'Response' = c(0.024, 0.256, 0.633, 0.678, 0.932))

mydata_mono2 <- data.frame('Conc1' = rep(0, 5), 'Conc2' = c(50, 40, 30, 20, 10), 'Response' = c(0.193, 0.244, 0.563, 0.750, 0.921))

mydata <- rbind(mydata_combo, mydata_mono1, mydata_mono2)
mydata$Drug1 <- drug1_name
mydata$Drug2 <- drug2_name

myed <- seq(from = 0.05, to = 0.95, by = 0.05)

res <- computeCI(data = mydata, edvec = myed, frac1 = 500, frac2 = 50, viability_as_pct = FALSE)


## End(Not run)

snowoflondon/CIcomputeR documentation built on Jan. 21, 2022, 6:11 p.m.