context('plm')
tol <- 1e-8
test_that("plm can handle different inputs", {
expect_error(plm(Q ~ W, c(1, 2, 3)))
expect_error(plm('Q ~ W', krokfors))
expect_error(plm(V ~ W, krokfors))
expect_error(plm(Q ~ W + X, krokfors))
expect_error(plm(Q ~ W, krokfors, c_param = min(krokfors$W) + 0.5)) # c_param higher than lowest stage measurements
expect_error(plm(Q ~ W, krokfors, c_param = 1L)) # c_param not double
expect_error(plm(Q ~ W, krokfors, h_max = max(krokfors$W) - 0.5)) #h_max lower than highest stage measurement
expect_error(plm(Q ~ W, krokfors[1,]), "At least two paired observations of stage and discharge")
expect_error(plm(Q ~ W, -1 * krokfors), "All discharge measurements must but strictly greater than zero")
skip_on_cran()
krokfors_new_names <- krokfors
names(krokfors_new_names) <- c('t1', 't2')
set.seed(1)
plm.fit_new_names <- plm(t2 ~ t1, krokfors_new_names, num_cores = 2)
expect_equal(plm.fit_new_names$rating_curve, plm.fit$rating_curve, tolerance = tol)
})
test_that("the plm object with unknown c is in tact", {
expect_is(plm.fit, "plm")
# latent parameters
test_stage_indep_param(plm.fit, 'a')
test_stage_indep_param(plm.fit, 'b')
# hyperparameters
test_stage_indep_param(plm.fit, 'c')
test_stage_indep_param(plm.fit, 'sigma_eta')
test_stage_indep_param(plm.fit, 'eta_1')
test_stage_indep_param(plm.fit, 'eta_2')
test_stage_indep_param(plm.fit, 'eta_3')
test_stage_indep_param(plm.fit, 'eta_4')
test_stage_indep_param(plm.fit, 'eta_5')
test_stage_indep_param(plm.fit, 'eta_6')
# log-likelihood
expect_true(is.double(plm.fit$posterior_log_likelihood))
expect_equal(length(plm.fit$posterior_log_likelihood),
plm.fit$run_info$num_chains * ((plm.fit$run_info$nr_iter - plm.fit$run_info$burnin) / plm.fit$run_info$thin + 1))
expect_equal(unname(unlist(plm.fit$posterior_log_likelihood_summary[1, ])),
as.double(get_MCMC_summary(matrix(plm.fit$posterior_log_likelihood, nrow = 1))),
tolerance = tol)
# rating curve and stage dependent parameters
test_stage_dep_component(plm.fit,'rating_curve')
test_stage_dep_component(plm.fit,'rating_curve_mean')
test_stage_dep_component(plm.fit,'sigma_eps')
# Other information
expect_equal(plm.fit$formula, Q ~ W)
expect_equal(plm.fit$data, krokfors[order(krokfors$W), c('Q', 'W')])
})
test_that("the plm object with known c with a maximum stage value is in tact", {
skip_on_cran()
set.seed(1)
plm.fit_known_c <- plm(Q ~ W, krokfors, c_param = known_c, h_max = h_extrap, num_cores = 2)
expect_is(plm.fit_known_c, "plm")
# latent parameters
test_stage_indep_param(plm.fit_known_c, 'a')
test_stage_indep_param(plm.fit_known_c, 'b')
# hyperparameters
expect_true(is.null(plm.fit_known_c[['c_posterior']]))
expect_false('c' %in% row.names(plm.fit_known_c))
test_stage_indep_param(plm.fit, 'sigma_eta')
test_stage_indep_param(plm.fit, 'eta_1')
test_stage_indep_param(plm.fit, 'eta_2')
test_stage_indep_param(plm.fit, 'eta_3')
test_stage_indep_param(plm.fit, 'eta_4')
test_stage_indep_param(plm.fit, 'eta_5')
test_stage_indep_param(plm.fit, 'eta_6')
# log-likelihood
expect_true(is.double(plm.fit_known_c$posterior_log_likelihood))
expect_equal(length(plm.fit_known_c$posterior_log_likelihood),
plm.fit_known_c$run_info$num_chains * ((plm.fit_known_c$run_info$nr_iter - plm.fit_known_c$run_info$burnin) / plm.fit_known_c$run_info$thin + 1))
expect_equal(unname(unlist(plm.fit_known_c$posterior_log_likelihood_summary[1,])),
as.double(get_MCMC_summary(matrix(plm.fit_known_c$posterior_log_likelihood, nrow = 1))),
tolerance = tol)
# rating curve and stage dependent parameters
test_stage_dep_component(plm.fit, 'rating_curve')
test_stage_dep_component(plm.fit, 'rating_curve_mean')
test_stage_dep_component(plm.fit, 'sigma_eps')
# check if maxmimum stage was in line with output
expect_equal(max(plm.fit_known_c$rating_curve$h), h_extrap)
expect_true(max(diff(plm.fit_known_c$rating_curve$h)) <= (0.05 + tol)) # added tolerance
})
# C++ functions tests
test_that("plm.density_evaluation_unknown_c works correctly", {
RC <- get_model_components('plm',
y = y,
h = h,
c_param = NULL,
h_max = max(h),
forcepoint = rep(FALSE, length(h)),
h_min = min(h))
theta <- c(log(1), log(0.1), 0, runif(5))
result <- plm.density_evaluation_unknown_c(theta, RC)
expect_type(result, "list")
expect_true(all(c("p", "x", "y_post", "y_post_pred", "sigma_eps", "log_lik") %in% names(result)))
expect_true(all(sapply(result, is.numeric)))
})
test_that("plm.density_evaluation_known_c works correctly", {
RC <- get_model_components('plm',
y = y,
h = h,
c_param = min(h) - 0.1,
h_max = max(h),
forcepoint = rep(FALSE, length(h)),
h_min = min(h))
theta <- c(log(0.1), 0, runif(5))
result <- plm.density_evaluation_known_c(theta, RC)
expect_type(result, "list")
expect_true(all(c("p", "x", "y_post", "y_post_pred", "sigma_eps", "log_lik") %in% names(result)))
expect_true(all(sapply(result, is.numeric)))
})
test_that("plm.predict_u_unknown_c works correctly", {
RC <- get_model_components('plm',
y = y,
h = h,
c_param = NULL,
h_max = max(h),
forcepoint = rep(FALSE, length(h)),
h_min = min(h))
theta <- c(log(1), log(0.1), 0, runif(5))
x <- c(1, 2)
result <- plm.predict_u_unknown_c(theta, x, RC)
expect_type(result, "list")
expect_true(all(c("y_post", "y_post_pred", "sigma_eps") %in% names(result)))
expect_true(all(sapply(result, is.numeric)))
expect_equal(length(result$y_post), length(RC$h_u))
expect_equal(length(result$y_post_pred), length(RC$h_u))
})
test_that("plm.predict_u_known_c works correctly", {
RC <- get_model_components('plm',
y = y,
h = h,
c_param = min(h) - 0.1,
h_max = max(h),
forcepoint = rep(FALSE, length(h)),
h_min = min(h))
theta <- c(log(0.1), 0, runif(5))
x <- c(1, 2)
result <- plm.predict_u_known_c(theta, x, RC)
expect_type(result, "list")
expect_true(all(c("y_post", "y_post_pred", "sigma_eps") %in% names(result)))
expect_true(all(sapply(result, is.numeric)))
expect_equal(length(result$y_post), length(RC$h_u))
expect_equal(length(result$y_post_pred), length(RC$h_u))
})
test_that("plm.calc_Dhat works correctly", {
RC <- get_model_components('plm',
y = y,
h = h,
c_param = NULL,
h_max = max(h),
forcepoint = rep(FALSE, length(h)),
h_min = min(h))
theta <- matrix(c(log(1), log(0.1), 0, runif(5)), nrow = 8)
result <- plm.calc_Dhat(theta, RC)
expect_type(result, "double")
expect_true(is.finite(result))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.