#' Estimate Binomial Parameters
#'
#' @family Parameter Estimation
#' @family Binomial
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @details This function will attempt to estimate the binomial p_hat and size
#' parameters given some vector of values.
#'
#' @description This function will check to see if some given vector `.x` is
#' either a numeric vector or a factor vector with at least two levels then it
#' will cause an error and the function will abort. The function will return a
#' list output by default, and if the parameter `.auto_gen_empirical` is set to
#' `TRUE` then the empirical data given to the parameter `.x` will be run through
#' the `tidy_empirical()` function and combined with the estimated binomial data.
#'
#' @param .x The vector of data to be passed to the function. Must be numeric, and
#' all values must be 0 <= x <= 1
#' @param .size Number of trials, zero or more.
#' @param .auto_gen_empirical This is a boolean value of TRUE/FALSE with default
#' set to TRUE. This will automatically create the `tidy_empirical()` output
#' for the `.x` parameter and use the `tidy_combine_distributions()`. The user
#' can then plot out the data using `$combined_data_tbl` from the function output.
#'
#' @examples
#' library(dplyr)
#' library(ggplot2)
#'
#' tb <- rbinom(50, 1, .1)
#' output <- util_binomial_param_estimate(tb)
#'
#' output$parameter_tbl
#'
#' output$combined_data_tbl |>
#' tidy_combined_autoplot()
#'
#' @return
#' A tibble/list
#'
#' @export
#'
util_binomial_param_estimate <- function(.x, .size = NULL, .auto_gen_empirical = TRUE) {
# Tidyeval ----
x_term <- .x
n <- length(x_term)
minx <- min(as.numeric(x_term))
maxx <- max(as.numeric(x_term))
m <- mean(as.numeric(x_term))
s2 <- var(as.numeric(x_term))
size <- .size
# Checks ----
if (!is.vector(x_term) && !is.factor(x_term)) {
rlang::abort(
message = "'.x' must be either a numeric or factor vector.",
use_cli_format = TRUE
)
}
if (is.factor(x_term) && length(levels(x_term)) < 2) {
rlang::abort(
message = "When '.x' is a factor it must have at least two levels.",
use_cli_format = TRUE
)
}
if (!is.factor(x_term) && !is.numeric(x_term)) {
rlang::abort(
message = "'.x' must be either a numeric or factor vector.",
use_cli_format = TRUE
)
}
# If size is NULL
if (is.null(size)) {
x <- as.numeric(x_term)
if (is.factor(x_term)) {
x <- x - 1 # makes the factor vector equal to the actual x vector provided.
}
size <- length(x)
if (size == 0) {
rlang::abort(
message = "'.x' must contain at least one non-missing value.",
use_cli_format = TRUE
)
}
if (!all(x == 0 | x == 1)) {
rlang::abort(
message = "If '.size' is not supplied and '.x' is numeric,
all non-missing values of '.x' must be 0 or 1.",
use_cli_format = TRUE
)
}
prob <- mean(x)
} else {
if (n != 1 || !is.numeric(x_term) ||
!is.finite(x_term) || x_term != trunc(x_term) ||
x_term < 0) {
rlang::abort(
message = "'.x' must be a single non-negative integer when
'.size' is not NULL",
use_cli_format = TRUE
)
}
if (length(size) != 1 || !is.numeric(size) || !is.finite(size) || size < x) {
rlang::abort(
message = "'.size' must be a positive integer at least as large as '.x'."
)
}
prob <- x_term / size
}
# Return Tibble ----
if (.auto_gen_empirical) {
if (is.factor(x_term)) {
xx <- x
} else {
xx <- x_term
}
te <- tidy_empirical(.x = xx)
td <- tidy_binomial(.n = n, .size = size, .prob = round(prob, 3))
combined_tbl <- tidy_combine_distributions(te, td)
}
ret <- dplyr::tibble(
dist_type = "Binomial",
samp_size = n,
min = minx,
max = maxx,
mean = m,
variance = s2,
method = "EnvStats_MME",
prob = prob,
size = size,
shape_ratio = prob / size
)
# Return ----
attr(ret, "tibble_type") <- "parameter_estimation"
attr(ret, "family") <- "binomial"
attr(ret, "x_term") <- .x
attr(ret, "n") <- n
if (.auto_gen_empirical) {
output <- list(
combined_data_tbl = combined_tbl,
parameter_tbl = ret
)
} else {
output <- list(
parameter_tbl = ret
)
}
return(output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.