#' Estimate Uniform Parameters
#'
#' @family Parameter Estimation
#' @family Uniform
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @details This function will attempt to estimate the uniform min and max
#' parameters given some vector of values.
#'
#' @description The function will return a list output by default, and if the parameter
#' `.auto_gen_empirical` is set to `TRUE` then the empirical data given to the
#' parameter `.x` will be run through the `tidy_empirical()` function and combined
#' with the estimated uniform data.
#'
#' @param .x The vector of data to be passed to the function.
#' @param .auto_gen_empirical This is a boolean value of TRUE/FALSE with default
#' set to TRUE. This will automatically create the `tidy_empirical()` output
#' for the `.x` parameter and use the `tidy_combine_distributions()`. The user
#' can then plot out the data using `$combined_data_tbl` from the function output.
#'
#' @examples
#' library(dplyr)
#' library(ggplot2)
#'
#' x <- tidy_uniform(.min = 1, .max = 3)$y
#' output <- util_uniform_param_estimate(x)
#'
#' output$parameter_tbl
#'
#' output$combined_data_tbl |>
#' tidy_combined_autoplot()
#'
#' @return
#' A tibble/list
#'
#' @export
#'
util_uniform_param_estimate <- function(.x, .auto_gen_empirical = TRUE) {
# Tidyeval ----
x_term <- as.numeric(.x)
minx <- min(x_term)
maxx <- max(x_term)
n <- length(x_term)
unique_terms <- length(unique(x_term))
# Checks ----
if (!inherits(x_term, "numeric")) {
rlang::abort(
message = "The '.x' parameter must be numeric.",
use_cli_format = TRUE
)
}
# Use linear model to obtain mu_hat
mu_hat <- stats::lm(x_term ~ 1)$coefficients[[1]]
s <- sqrt(((maxx - minx)^2) / 12)
# Momenth Method Estimator
a_mme <- mu_hat - sqrt(3) * s
b_mme <- mu_hat + sqrt(3) * s
# MLE Estimator
a_hat_mr <- stats::median(range(minx, maxx))
h <- (0.5 * range(minx, maxx))
a_mle <- round((a_hat_mr - h)[[2]], 0)
b_mle <- round((a_hat_mr + h)[[2]], 0)
# Return Tibble ----
if (.auto_gen_empirical) {
te <- tidy_empirical(.x = x_term)
td <- tidy_uniform(.n = n, .min = round(a_mme, 3), .max = round(b_mme, 3))
combined_tbl <- tidy_combine_distributions(te, td)
}
ret <- dplyr::tibble(
dist_type = rep("Uniform", 2),
samp_size = rep(n, 2),
min = rep(minx, 2),
max = rep(maxx, 2),
method = c("NIST_MME", "NIST_MLE"),
min_est = c(a_mme, a_mle),
max_est = c(b_mme, b_mle),
ratio = c(a_mme / b_mme, a_mle / b_mle)
)
# Return ----
attr(ret, "tibble_type") <- "parameter_estimation"
attr(ret, "family") <- "uniform"
attr(ret, "x_term") <- .x
attr(ret, "n") <- n
if (.auto_gen_empirical) {
output <- list(
combined_data_tbl = combined_tbl,
parameter_tbl = ret
)
} else {
output <- list(
parameter_tbl = ret
)
}
return(output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.