Description Usage Arguments Details Value Examples
View source: R/zero_est_graph.R
Exhaustive search using BIC for DAGs for zero-inflated data based on Hurdle conditionals.
1 |
V |
A matrix of 0/1s, equal to Y != 0. |
Y |
A data matrix of the same size as |
parametrization |
A string, either |
verbose |
A logical, whether to print intermediate steps. |
control |
A list passed to |
Performs exhaustive DAG search (using BIC) for DAGs for zero-inflated data based on Hurdle conditionals.
See Silander and Myllymaki (2006) or ?pcalg::simy
for details. However, unlike the Gaussian case in their implementation that returns an equivalence class of DAGs, the DAG estimated by this function is exact.
An adjacency matrix.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | m <- 4; n <- 1000
adj_mat <- ZiDAG::make_dag(m, mode = "chain", shuffle=TRUE)
d <- ZiDAG::gen_zero_dat(seed=1, gen_para="pms", adj_mat=adj_mat, n=n, gen_uniform_degree=1)
est <- ZiDAG::ziSIMY(V=d$V, Y=d$Y, parametrization="pms", verbose=FALSE,
control=list("max_uniform_degree"=1L, "tol"=1e-8, "print_best_degree"=FALSE))
adj_mat == est
d <- ZiDAG::gen_zero_dat(seed=1, gen_para="abk", adj_mat=adj_mat, n=n, gen_uniform_degree=1)
est <- ZiDAG::ziSIMY(V=d$V, Y=d$Y, parametrization="abk", verbose=FALSE,
control=list(use_C=TRUE, maxit=1000, runs=2, report=0))
adj_mat == est
est <- ZiDAG::ziSIMY(V=d$V, Y=d$Y, parametrization="pms", verbose=FALSE,
control=list("max_uniform_degree"=1L, "tol"=1e-8, "print_best_degree"=FALSE))
adj_mat == est
est <- ZiDAG::ziSIMY(V=d$V, Y=d$Y, parametrization="pms", verbose=FALSE,
control=list("max_uniform_degree"=2L, "tol"=1e-8, "print_best_degree"=FALSE))
adj_mat == est
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.