Description Usage Arguments Details Examples
View source: R/zero_est_core.R
Gradient of log_dhurdle1d_abk() (with scalar v and y) with respect to a, b, k.
1  | grad_full_vec(V, Y, A, B, k11, Vo, Yo, minus_Y = TRUE)
 | 
V | 
 A logical vector, indicating if each entry in   | 
Y | 
 A numerical vector of i.i.d. 1-d Hurdle random variables.  | 
A | 
 A number or a vector of the same length   | 
B | 
 A number or a vector of the same length   | 
k11 | 
 A number, the   | 
Vo | 
 A numerical vector of the same dimension as   | 
Yo | 
 A numerical vector, a sample for the parent nodes (regressors).  | 
minus_Y | 
 A logical, argument as in   | 
The derivative of log_dhurdle_vec_abk(V[,1], Y[,1], A, B, k) with respect to aa, bb and k, where A=sum_A_mat(aa, V[,2:p], Y[,2:p]) and B=sum_B_mat(bb, V[,2:p], Y[,2:p], minus_Y).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  | set.seed(1)
n <- 100; p <- 10
V <- matrix(rbinom(n*p, 1, 0.8), nrow=n, ncol=p)
Y <- matrix(rnorm(n*p) * V, nrow=n, ncol=p)
aa <- rnorm(2*p-1)
bb <- rnorm(2*p-1)
k <- abs(rnorm(1))
grad_vec <- grad_full_vec(V[,1], Y[,1], sum_A_mat(aa, V[,2:p], Y[,2:p]),
   sum_B_mat(bb, V[,2:p], Y[,2:p], minus_Y=TRUE), k, V[,2:p], Y[,2:p], minus_Y=TRUE)
numer_grad <- numDeriv::grad(function(x){
   log_dhurdle_vec_abk(V[,1], Y[,1], sum_A_mat(x[1:(2*p-1)], V[,2:p], Y[,2:p]),
      sum_B_mat(x[(2*p):(4*p-2)], V[,2:p], Y[,2:p], minus_Y=TRUE), x[4*p-1])}, c(aa, bb, k))
max(abs(grad_vec - numer_grad))
grad_vec <- grad_full_vec(V[,1], Y[,1], sum_A_mat(aa, V[,2:p], Y[,2:p]),
   sum_B_mat(bb, V[,2:p], Y[,2:p], minus_Y=FALSE), k, V[,2:p], Y[,2:p], minus_Y=FALSE)
numer_grad <- numDeriv::grad(function(x){
   log_dhurdle_vec_abk(V[,1], Y[,1], sum_A_mat(x[1:(2*p-1)], V[,2:p], Y[,2:p]),
      sum_B_mat(x[(2*p):(4*p-2)], V[,2:p], Y[,2:p], minus_Y=FALSE), x[4*p-1])}, c(aa, bb, k))
max(abs(grad_vec - numer_grad))
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.